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Abstract— This paper proposes a series of new approaches to
improve generative adversarial network (GAN) for conditional
image synthesis and we name the proposed model as “ArtGAN.”
One of the key innovation of ArtGAN is that, the gradient of the
loss function w.r.t. the label (randomly assigned to each generated
image) is back-propagated from the categorical discriminator to
the generator. With the feedback from the label information,
the generator is able to learn more efficiently and generate image
with better quality. Inspired by recent works, an autoencoder
is incorporated into the categorical discriminator for additional
complementary information. Last but not least, we introduce a
novel strategy to improve the image quality. In the experiments,
we evaluate ArtGAN on CIFAR-10 and STL-10 via ablation
studies. The empirical results showed that our proposed model
outperforms the state-of-the-art results on CIFAR-10 in terms
of Inception score. Qualitatively, we demonstrate that ArtGAN
is able to generate plausible-looking images on Oxford-102 and
CUB-200, as well as able to draw realistic artworks based on
style, artist, and genre. The source code and models are available
at: https://github.com/cs-chan/ArtGAN.

Index Terms— Generative adversarial networks, deep learning,
image synthesis, artwork synthesis, ArtGAN.

I. INTRODUCTION

“Good artists copy, great artists steal.” [65]
— Pablo Picasso

ECENTLY, Goodfellow ef al. [1] proposed an interesting

features learning model called Generative Adversarial
Networks (GAN) by employing two neural networks
that are adversarially trained. Unlike the traditional deep
discriminative models [2]-[4], the representations learned by
GAN can be visualized through the generator in GAN in the
form of synthetic images. More interestingly, these generated
images look more realistic to human observers compared

Manuscript received August 30, 2017; revised April 28, 2018 and
July 14, 2018; accepted August 13, 2018. Date of publication August 22,
2018; date of current version September 25, 2018. This work was supported
in part by the Fundamental Research Grant Scheme (FRGS) MoHE from
the Ministry of Education Malaysia under Grant FP004-2016 and in part by
the UM Frontier Research from University of Malaya under Grant FG002-
17AFR. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Catarina Brites. (Corresponding author:
Chee Seng Chan.)

W. R. Tan, H. E. Aguirre, and K. Tanaka are with Shinshu
University, Nagano 380-8553, Japan (e-mail: 14st203c@shinshu-u.ac.jp;
ahernan @shinshu-u.ac.jp; ktanaka@shinshu-u.ac.jp).

C. S. Chan is with the Center of Image and Signal Processing, Faculty
of Computer Science and Information Technology, University of Malaya,
Kuala Lumpur 50603, Malaysia (e-mail: cs.chan@um.edu.my).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2018.2866698

to other generative models. Since then, many extensions of
GAN [5]-[11] have been introduced and showed promising
results in generating appealing images when trained on
datasets, such as MNIST [12], CIFAR-10 [13], ImageNet [14],
etc. Despite the success, there is still room for improvement
as the synthetic image quality is still far from realistic.

While unconditional GAN is an important research area, this
paper is interested in class-conditioned GAN. In particular,
conditional GAN is useful to understand how the visual
representation of each class is learned via the visualization
techniques inherent in GAN. Furthermore, we are interested
to investigate if a machine can generate artwork based on style,
genre, or artist. Artwork is a mode of creative expression, com-
ing in different kinds of forms, including drawing, naturalistic,
abstraction, etc. Unlike the aforementioned datasets [12]—[14],
the representations of artworks can be harder to learn because
they are usually non-figurative or abstract.

To this end, we propose a novel conditional GAN named
ArtGAN for conditional synthesis of natural image and art-
work. We anticipate that a good way to look at this problem
is to understand how humans learn to draw. An artist teacher
wrote an online article’ and pointed out that an effective
learning requires to focus on a particular type of skills at
a time, e.g. practice to draw a particular object or one
kind of movement at a time. Accordingly, ArtGAN takes
a randomly chosen label information and a noise vector as
inputs. The chosen label is used as the true label when
computing the loss function for the generated image. The idea
is to allow the generator to learn more efficiently by leveraging
the feedback information from the labels. Inspired by recent
works [15], [16], a categorical autoencoder-based discrimi-
nator that incorporates an autoencoder into the categorical
discriminator for additional complementary information is
introduced. Rather than deploying two separate computation-
ally expensive networks (i.e. a categorical discriminator and
an autoencoder separately), the categorical autoencoder-based
discriminator in our proposed GAN partly shares the same
architecture and weights. In specific, encoder in the autoen-
coder is shared by the categorical discriminator as illustrated
in Figure 1.

In addition, we introduce a novel strategy to improve the
generated image quality. The motivation behind this strategy
is to generate a set of pixels that vote for a better quality
pixel via average ranking in order to generate better pixel

1 http://www.learning-to-see.co.uk/effective-practice
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Fig. 1. Overview of ArtGAN-AEM architecture. z and ¢ are concatenated and fed to the generator to produce synthetic image G (z, ¢). Either the downsampled
generated image G (z, ¢) or real data X is used as the input x to the (categorical autoencoder-based) discriminator. The discriminator produces three outputs:
the class prediction p(c|x), adversarial prediction p(y|x), and the reconstructed image D 4f (X).

values. One may naively train an ensemble GANs to achieve
this goal. However, training multiple GANs explicitly is
computationally expensive and does not guarantee to achieve
similar performance gain [17], [18]. Hence, we innovate an
alternative approach where the generator in ArtGAN will
generate synthetic images with resolution 2x higher than
the original image size. Then, these generated images will
be downsampled to the original size using averaged pooling
operation as a form of voting scheme. Example of the ArtGAN
outputs are illustrated at Figure 2.

In summary, our key contributions are: i) We propose
ArtGAN to emulate the concept of effective learning to gener-
ate very challenging images. Within this, we introduce a novel
way to improve the image quality. ii) Empirically, we show
that our proposed models are able to generate CIFAR-10 [13]
and STL-10 [19] images with better Inception scores compared
to the state-of-the-art results. iii) Our models are capable of
generating Oxford-102 [20] and CUB-200 [21] samples that
contain clear object structures in them. At the same time, Art-
GAN is also able to generate high quality artwork that exhibit
similar visual representations within genre, artist, or style.
To the best of our knowledge, no existing empirical research
has addressed the implementation of a generative model on a
large scale artworks dataset.

A preliminary version of this work was presented
earlier [22]. The present work adds to the initial version
in significant ways. First, we extend ArtGAN with the
introduction of categorical autoencoder-based discriminator.
Secondly, we innovate a way to improve the image quality
generated by ArtGAN. Thirdly, considerable new analysis
and intuitive explanations are added to the initial results. For
instance, we extend the original qualitative experiments from
Wikiart [23] to CIFAR-10 [13], STL-10 [19], Oxford-102 [20],
and CUB-200 [21] datasets. In addition, we included the
Inception score [24] as a quantitative metric where ArtGAN
obtained state-of-the-art result on CIFAR-10 dataset.

The rest of the paper is structured as follows. Related works
are discussed in the next section (Section II). Section III
describes the proposed models, while the image quality strat-
egy is explained in detail in Section IV. Experiments are

discussed in Section V. Last but not least, conclusion is drawn
in Section VI.

II. RELATED WORKS

Generative models have been a fundamental interest and
challenging problem in the field of computer vision and
machine learning. In contrast to discriminative models which
only allow sampling of the target variables conditioned on
the observed quantities, generative models can be used to
simulate observed distribution, and so they offer a much richer
representation. Early works [25]-[27] studied the statistical
properties of natural images, but are limited to texture or cer-
tain patterns (e.g. faces) only due to the difficulty in learning
an effective feature representation. Recently, advances in deep
models nourish a series of deep generative models [28], [29]
for image generation through the Bayesian inference, typically
trained by maximizing the log-likelihood. These models are
able to construct decent quality images on less complicated
images, such as digits and faces, but generally have intractable
likelihood and require numerous approximations. Denoising
autoencoders (DAE) [30] were introduced to overcome the
intractable problem, but the reconstructed images are gener-
ally blurry. Then, DRAW [31] was proposed, depicted as a
sequential model with attention mechanism to draw image
recursively. It mimics the process of human drawing but faces
challenges when it is scaled up to large and complex images.
PixelRNN [32] is another autoregressive approach for image
generation that has received much attentions recently. Its
extensions (PixelCNN [33] and PixelCNN++ [34]) are able
to synthesize decent images but are computationally expensive
to train.”

Recently, a more significant breakthrough framework,
Generative Adversarial Network (GAN) was introduced by
Goodfellow et al. [1]. This framework escapes the difficulty of
maximum likelihood estimation by estimating the generative
model via an adversarial process and has gained striking
successes in natural image generation. However, GAN is

2They reported that PixelCNN++ requires approximately 5 days to con-
verge to the reported results using 8 Maxwell TITAN X GPUs in github:
https://github.com/openai/pixel-cnn.
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Fig. 2.  ArtGAN samples on Wikiart, CIFAR-10, STL-10, Oxford-102 and CUB-200 (Best viewed in color).

well-known for its instability during training. To tackle this
problem, feature matching [24] was proposed to generate
descent quality images. Instance noise [35] is also an effective
method to remedy the instability problem. Several variants
proposed to address this problem by analysing the objec-
tive function of GAN. Wasserstein GAN (WGAN) used the
Lipschitz constrained Earth-Mover (EM) distance to address
the vanishing gradient and the saturated Jensen-Shannon dis-
tance problems. However, WGAN can still generate low
quality images and fail to converge in many settings.
An improvement [36] was proposed to overcome these
problems. Although they argued that the performance is
more stable at convergence, WGAN is still outperformed
by DCGAN [6] in terms of convergent speed and Inception
score. A similar solution was introduced in Loss-Sensitive
GAN (LS-GAN) [37] with theoretical analysis on Lipschitz
densities. They conceptually proved that the GAN loss func-
tions with bounded Lipschitz constants are sufficient to match
the model density to true data density. However, objects in
their generated CIFAR-10 images are hardly recognizable.
Meanwhile, Least Squares GAN (LSGAN) [38] adopted the
least square loss function in the discriminator. They showed
that minimizing the objective function yields minimizing
the Pearson X divergence. Their results demonstrated that
LSGAN is able to synthesize appealing images on LSUN,
CIFAR-10, and handwritten Chinese characters datasets.
Presently, another subfamily of GAN was introduced
where an autoencoder is employed in the discriminator. The
Energy-based GAN (EBGAN) [15] is trained by replacing the
discriminator with an autoencoder and it has demonstrated
decent quality synthetic images up to 256 x 256 pixels.
Denoising Feature Matching (DFM) [39] maintains the tradi-
tional GAN adversarial loss, but an additional complementary
information to the generator is computed using a denoising
autoencoder in the feature space learned by the discriminator.
DFM achieved state-of-the-art Inception score on CIFAR-10 in
the unsupervised settings. Both works suggested a non-trivial
idea that the multi-targets information from the reconstruction
loss helps to improve the model performance. A closely
related work, Boundary Equilibrium GAN (BEGAN) [16]
was proposed with a new equilibrium enforcing method.
Surprisingly, it demonstrated realistic face generation but
is significantly outperformed by DFM on CIFAR-10. This
suggests that the traditional adversarial loss remains an
important factor to generate realistic complex images.
StackGAN [11] was proposed to overcome the instabil-
ity issue when training GAN to generate images at higher
resolutions (e.g. 256 x 256). It employed a hierarchical
structure by stacking multiple generators that learn to generate

images with different resolutions. Their results demonstrated
that StackGAN is able to generate appealing images at
256 x 256 resolution. A different type of hierarchical structure
was employed in Karras ef al. [40] by progressively training
different layers in a generator at different stages. As a result
of this, they are able to generate high quality images with
resolution as high as 1024 x 1024.

Among latest works, few GAN variants such as
CVAE-GAN [47], LSGAN [38], Stacked GAN (SGAN) [57],
and Progressive GAN [40] demonstrated their ability in gen-
erating high quality images. Qualitatively, their generated
images seem to outperform the proposed ArtGAN in terms of
subjective image quality. Interestingly, the proposed ArtGAN
is able to achieve better Inception score when compared to
SGAN [57]. This shows that Inception score [24] is unable to
measure the perceptual quality of an image.

A. Conditional Image Synthesis

While unconditional image synthesis is an important
research area, many practical applications require the model
to be conditioned on some prior information. This prior
information has many forms, for instance a distorted image
for inpainting [32], [41]; natural image for super-resolution [8]
or style transfer [42]-[44]; text codes for text to image
translation [10], [11]. Due to the nature of this work, we will
only focus on the works related to class-conditioned image
generation.

An earlier work that employed conditional setting in
GAN was Conditional GAN (CondGAN) [5] where it feeds
the labels or modes to the generator and discriminator.
However, such setting was demonstrated on less complex
images i.e. MNIST and faces [45]. While this website3 unof-
ficially generated images on CIFAR-10 using CondGAN,
the objects in their generated images are hardly recognizable.
This is expected because the labels were not fully utilized,
as there is no error information backpropagated from the
labels. A closed work to ArtGAN is InfoGAN [46] where
the discriminator is replaced by a multi-class classifier. Also,
InfoGAN has two heads in the discriminator that output ¢
and y separately. Hence, InfoGAN has different architecture
compared to ArtGAN. Empirical results showed that InfoGAN
is able to learn disentangled representations in an unsupervised
manner but the meaning of the representations are uncontrol-
lable during the training stage. As to CondGAN [5], InfoGAN
only demonstrated on less complex images, i.e. digits and
faces. Bao et al. [47] proposed CVAE-GAN that combined
Conditional Variational Autoencoder and GAN. CVAE-GAN

3 http://soumith.ch/eyescream/
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is asymmetrically trained by introducing a new objective
function for the generator. At the same time, they also trained
an encoder network to map the real image to the latent vector.
This allows their model to learn a better correlation between
the latent vector and the image. They demonstrated that
CVAE-GAN is able to generate realistic and diverse images
on face, flowers, and birds datasets [20], [21], [48]. However,
CVAE-GAN was trained on pre-processed images centered
around the objects. Hence, their results are not comparable to
ArtGAN as the images used in our experiments are randomly
cropped.

In addition to the GAN variants, PixelCNN [33], [34] also
demonstrated decent results on conditional image generation
but it is computationally expensive for sampling. Built on
Deep Generator Network (DGN) [49], Plug and Play Gen-
erative Networks (PPGN) [50] is able to produce high quality
images at high resolution. It allows different generators and
condition networks to be hacked together without having to
re-train the generators. However, PPGN differs to the other
generative models discussed, herein images are generated in
one-shot from the latent codes in the traditional generative
models. That is to say, in PPGN, images are generated by
optimizing the latent codes to produce images that highly
activate target neuron in the condition network. The sampling
procedure is formalized as an approximate Langevin Markov
chain Monte Carlo sampler to ensure diversity. Like other
sequential approaches, such gradient-based recursive approach
may cause unwanted overhead when deployed in some of
the real-world applications, e.g. mobile devices. Nonetheless,
they showed that adversarial training is crucial to obtain high
quality images.

III. PROPOSED METHOD
This section describes the proposed method in detailed.
First, we revisit the traditional GAN [1] model. Then,
we depict the formulations of the proposed ArtGAN
variants. The architecture of the best ArtGAN variant (i.e.
ArtGAN-AEM) is depicted in Figure 1.

A. Preliminaries: Generative Adversarial Networks

Generative Adversarial Networks (GAN) [1] contains two
networks that are trained by competing with each other. The
Generator G aims to generate images G(z) that have a distri-
bution pg similar to the true data distribution pga:4, such that
G (z) are difficult to differentiate from real images X ~ pgara-
Traditionally, G generates images from some noise vectors z ~
Pnoise that are sampled from a distribution pjpise (€.g. uniform
distribution). On the other hand, the Discriminator D is trained
to distinguish the images generated by G from the real images.
Overall, the training procedure is a two-player min-max game
with the following objective function,

mGin max Esn pyare 108 DX)] + Egzp, i, [log(1 — D(G(2))]
(1
B. ArtGAN

The basic structure of ArtGAN is similar to GAN, such
that it consists of a discriminator and a generator that are

simultaneously trained using the minmax formulation of GAN,
as described in Eq. 1. The key innovation of ArtGAN is to
allow feedback from the labels given to each generated image
through the loss function. That is, additional label information
is fed to the generator to draw a specific subject based on the
information, imitating how human learns to draw. This is in
contrast to CondGAN [5] that does not fully utilize the labels
during training. In order to leverage the labels information,
the discriminator is extended to categorical autoencoder-based
discriminator to output K + 1 logistic predictions with K
actual categories following the dataset used, and K +17" output
as the adversarial class (denoted as Fake category).
Formally, the formulation of a categorical discriminator is
written as D : RT*WxC _ REK+ here H, W, and C are
the height, width, and number of channels of an image, respec-
tively. This is somehow similar to Salimans et al. [24], except
that the conditional setting is not implemented in their work.
While the notations of the conditional generator is written as
G : (z,¢) — REXWXC where ¢ is the randomly chosen label
for the generated sample in the form of one-hot vector. This
allows the generator to learn better from the feedback labels
information. Following Salimans et al. [24], we modify the
categorical discriminator such that D becomes the standard
supervised classifier with K outputs, D : REXWxC _ RK,
Let Ix(x) € D(x) be the output of D(x) at class k without
activation function and x is an input image (either from real
data or generator). The probability distribution over K classes
is given as p(c|x), such that the predicted probability for each
class k is defined as a softmax function,
el )

P = s @)
The probability distribution function for the binary adversarial
prediction p(y|x) of the discriminator is then reformulated as

Z(x)

p(ylx) = 70 11 3
where Z(x) = Z;K=1 eli. While, p(y|x) = 1 infers that
the image x is real. The benefit of such setting is that the
number of parameters can be reduced to relax the over-
parametrization problem without changing the output of the
softmax, conceptually. The D is then trained by minimizing
the following discriminator loss function £p,

K
Lp = ~E& &)~ paua [Z éi log p(ci|R) + log p(y|ﬁ)}

i=1
—Ez~p,w,v5l,,5[10g(1 —p(yG(z, 5)))} “)

where ¢ is the ground truth one-hot label of the given real
image X. The generator loss function L to be minimized for
training G is defined as,

’CG = _EZNPILUiSEaE

K
[Z i log p(ci|G (2. ©)) +log(p(y/G (2, 6)))] 5)

i=1
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Fig. 3. Different ArtGAN variants (bottom row) compared to the state-of-the-art models (top row). The discriminator in ArtGAN outputs the class predictions
and the loss function is computed from the true labels, instead of taking the true labels as input as depicted in CondGAN. Hence, the true labels can be
leveraged to train the discriminator and generator. Meanwhile, ArtGAN-EB and ArtGAN-AE share the same model, that is a combination of ArtGAN and
EBGAN with shared encoder. However, the decoder in ArtGAN-AE is not trained using the generated samples, as opposed to ArtGAN-EB. ArtGAN-DFM
depicts the extension from DFM with conditional settings. Note that InfoGAN has a different architecture compared to ArtGAN since InfoGAN has two heads
in the discriminator that output class ¢ and adversarial y predictions separately.

Inspired by recent works [15], [16], [39], we incorporate
an autoencoder into the categorical discriminator in ArtGAN
for additional complementary information. The core idea
of using an autoencoder in the discriminator is that
reconstruction-based output offers diverse targets, which
produce a very different gradient directions within the
minibatch. Conceptually, this improves the efficiency and
effectiveness when training a GAN model. Rather than
deploying two separate computationally expensive networks
(a categorical discriminator and an autoencoder separately),
the same architecture and weights are partly shared. In specific,
the encoder in the autoencoder is shared by the categorical
discriminator, as shown in Figure 1. In this paper, the for-
mulations of the categorical autoencoder-based discriminators
are described in three different ways. The first two variants,
ArtGAN-EB and ArtGAN-AE are implemented using the
pixel-level autoencoder, similar to EBGAN [15]. However,
these two variants are differed in terms of the discriminator
loss functions formulation. The third type, ArtGAN-DFM
is an extension of Denoising Feature Matching (DFM) [39]
to a conditional setup, forming a Conditional DFM. All the
ArtGAN variants are summarized in Figure 3 and the details of
the loss functions formulations for each of them are described
next. Meanwhile, analysis and comparisons between these
ArtGAN variants will be discussed in the experimental section.

1) ArtGAN-EB: EBGAN [15] is formulated according to
the energy-based models by replacing the discriminator with
an autoencoder, such that Djg(-) Dec(Enc(-)), where
Dec and Enc are the decoder and encoder, respectively. The
discriminator loss Lp., in EBGAN is given as,

Lpeb = Es paa [IIDAE(ﬁ) - fill}

+Ez'\‘l7no[se [max(O, m — IIDAE (G(Z)) - G(Z)| |)}
(6)

where || - || is a Euclidean norm, and m as a positive margin.
The generator loss Lgep is formulated as,

LGeb = Ez~pnom |:||DAE(G(Z)) - G(z)||i| (7
In order to formulate a conditional energy-based loss

function, ArtGAN-EB propose a novel discriminator loss
function L pepe as,

Lpebe = LD + Lpeb (8)

and the new generator loss LG4, is defined as,
LGae = LG + LGeb )
2) ArtGAN-AE: The discriminator loss is similar to

ArtGAN-EB (Eq. 8), except that we do not use the gener-
ated images as adversarial samples to update the decoder.
This was inspired by DFM [39] to use the autoencoder as
a source of complementary information when updating the
generator, instead of using the autoencoder as an adversarial
function (as in [15]). Hence, the discriminator loss Lpg. of
ArtGAN-AE is formulated as,

Lpae = LD + Bz piura |:||DAE (X) — ?Ai||1| (10)
Meanwhile, ArtGAN-AE has the same generator loss as
ArtGAN-EB (Eq. 9).

3) ArtGAN-DFM: In DFM [39], an additional denoising
autoencoder (or denoiser) r(-) is employed to update the
generator. The denoiser is trained separately from the discrim-
inator. In specific, the denoiser is trained on the discriminator’s
hidden state when it is evaluated on the training data. Formally,
D is updated according to Eq. 1. Given that ®(-) is a hidden
state from D(-), the denoiser is trained by minimizing the
following loss function £,

Ly =E§~pda,(,[ll®(ﬁ)—r(CD(f&))II} D
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backpropagate averaged
from same output! .
within block A prediction

Fig. 4. The proposed strategy using overlapped average pooling. Pixels in
the same block from B (e.g. [Bj, -, Bg]) will vote for an improved pixel
in A (e.g. Ay) through averaging.

Then, the generator is trained with the loss function Lggfm,
ﬁGdfm = IEz~pn,,;w |:j~denoise||q)(G(z)) —r(®(G(2)))ll

— Ladv l0g D(G(Z))} (12)
Warde-Farley and Bengio [39] suggested to fix 1,4, = 1 and
set Adenoise = 0.03/ny, where ny, is the number of discrimina-
tor hidden units fed to the denoiser as input. The modification
is straightforward using the categorical discriminator as the
discriminator network. Hence, the discriminator loss is same
as Eq. 4, and the denoiser loss remains unchanged (Eq. 11).
The generator loss LG47mc for the conditional DFM is defined
as,

£Gdfmc ZEz~pn0;se I:idenoiseH(D(G(z)) —r(®(G(z))| |:| + Lg
(13)

IV. IMAGE QUALITY (IQ) STRATEGY

In order to improve the quality of the image generated
by ArtGAN, we introduce a novel strategy. The motivation
behind this strategy is to generate a set of pixel to vote for
an improved (better quality) pixel via average ranking. That
is to say, we will train a generator to synthesize images at a
resolution 2x higher than the original image size. Then, these
generated images will be downsampled by a factor of 2 via
average pooling operation as a voting scheme.

In specific, suppose a generator in the traditional GAN
trained on a dataset generates 32 x 32 pixels images,
G : z — R3%32XC where C is the number of channels. Using
IQ strategy, the generator will instead generate 64 x 64 pixels
images (i.e. 2x higher resolution), G : z — R%*64<C_This is
done by adding an upsampling block (typically an upsampling
layer followed by a convolutinal layer) between the existing
layers in the generator. Then, the generated samples are
downsampled, such that 7 : RO4X04xC _, R32x32xC yhere
7 (-) is a downsampling operation. Meanwhile, the input size
of the discriminator remains the same as to the original size,
such that D : R32x32xC _, RK where K is the number of
categories.

In this paper, overlapped average pooling is chosen as the
downsampling operation. The average pooling operation can
be viewed as a form of voting system, as shown in Figure 4.

Overlapping the pooling operations discourages the generator
from blindly computes the same pixel value within the same
pooling block. Overall, when the overlapped average pooling
is used, the generator is regularized with two seemingly
contradictory constraints: i) the generated pixels within the
same pooling block should have similar intensity so that
the generated image looks smooth across the same color
(e.g. smooth blue sky); ii) the generated pixels must not be
naively computed to produce the same intensity that may cause
excessive artifacts in the image. During inference, this pooling
layer can be removed in order to output higher resolution
synthetic images. Readers should be noted that this is different
from super-resolution as the nature of this paper focuses on
generating random images based on the given labels.

V. EXPERIMENTAL RESULTS
A. Experimental Settings

This section describes the settings that are used in all
experiments, unless stated otherwise. All networks are trained
with Adam optimizer [51] with an initial learning rate =
0.0002, g1 = 0.5, and minibatch size = 100. The learning
rate is decreased by a factor of 10 after iteration 30, 000.
Input noise vector z is a 100-dimensional multivariate random
variable sampled using an i.i.d. uniform distributed random
generator U(—1, 1). Instance noise [35] is implemented in
all discriminators for better training stability. For a fair com-
parison, we run one gradient descent step for each player
in each iteration. Generally, this is better than running more
steps of one player than the other [52]. Also in practice, it is
very difficult to determine how many steps to use, as the
performance is usually inconsistent using the same setting on
different datasets. The rest of the settings will be described
in the related sections. The experiments were conducted using
Tensorflow [53] with one Titan X (Maxwell) GPU.

For evaluation, Inception score is adopted [24] as the quan-
titative metric. Intuitively, Inception score measures the object-
ness by minimizing entropy per-sample posterior (i.e. each
sample is classified with high certainty), as well as the
class diversity by maximizing the entropy aggregate posterior
(i.e. the classifier used in Inception score identifies a wide
variety of classes among the samples). However, one should
aware that class diversity metric becomes meaningless in the
conditional setting as the conditional generative models will
always generate visually different images in different modes.
In addition, the class diversity metric can be misleading,
i.e. it can be maximized (higher is better) and fooled when
the predicted class distributions of all generated samples are
uniform. Hence, we split the measurements (objectness and
class diversity metrics) when we report the scores in this paper
for performance evaluations.

Since Inception score is calculated by measuring the object
class confidence scores, therefore it is not suitable to assess
the model performance on artworks. Meanwhile, evaluation of
generative model based on the state-of-the-art log-likelihood
estimates can be misleading [54]. Hence, the comparative
studies are first conducted using the objectness metric from
Inception score on CIFAR-10 [13] and STL-10 [19] datasets.
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Then, Wikiart dataset [23], [55] is used for artworks synthesis
based on genres, artists, and styles. Finally, we trained on
Oxford-102 [20] and CUB-200 [21] for additional perfor-
mance assessments.

We used similar design to BEGAN [16] (i.e. employing
nearest neighbour upsampling instead of strided deconvolution
layer in the generator as suggested by Odena et al. [56]) in
order to avoid checkerboard artifacts. Between the upsampling
layers, there is at least one layer of convolutional layer. The
discriminator has the same design as to the traditional GAN
with multiple layers of strided convolutional layers. Batch nor-
malization and leaky ReLU are used in both the discriminator
and generator. Due to page limit, detailed network descriptions
and additional generated samples are available in the appendix.
The list of proposed models are as follows:

1) ArtGAN - Baseline model [22].

2) ArtGAN-EB - The first variant
autoencoder-based discriminator.
ArtGAN-AE - The second variant of categorical
autoencoder-based discriminator.

ArtGAN-DFM - The third variant of categorical
autoencoder-based discriminator.

ArtGAN-M - ArtGAN with IQ strategy.

ArtGAN-D - It has similar architecture as to ArtGAN-M
but without IQ strategy. This model is used to verify if
network size is the main factor that contributes to the
performance improvements observed on ArtGAN-M.
ArtGAN-AEM - ArtGAN-AE with 1Q strategy.
ArtGAN-AEMT - Huang er al. [57] employed a trick
by updating more steps for the generator per each dis-
criminator update step. Although it is hard to determine
number of steps, their setup seems to work well for
CIFAR-10. Hence, the same setting is employed in our
CIFAR-10 experiment as a comparison.

of categorical
3)
4)

5)
6)

7)
8)

B. Evaluation and Metric

Evaluation of a generative model is extremely difficult as
it is still not clear how to quantitatively evaluate a generative
model. This is due to the difficulty in estimating the intractable
log-likelihood in many models [54]. The most widely used
log-likelihood estimator is the Parzen window estimates [58].
However, Theis et al. [54] convincingly argued that this
estimator can be quite misleading for high-dimensional data.
Recently, Salimans et al. [24] proposed Inception score
(higher is better) as a different way to assess image quality by
using the:

1({x}Y) = expE[Dk (P X) p(Y))])
~ exp(—E[H (p(y|x))] + E[H (Ex(p(y]x)))])
(14)

where H(-) is the Shannon entropy and Dgy(-) is the
KullbackLeibler divergence. As aforementioned, this metric
measures the objectness in the first term (lower is better) and
class diversity in the second term (higher is better) of the
samples. It can be misleading when the class diversity metric
is fooled. An example can be seen in our experiments when
we compare ArtGAN (baseline) and ArtGAN-EB in Table I.
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TABLE I

INCEPTION SCORES ON CIFAR-10 EVALUATED AT 32x 32 PIXELS. SCORES
ARE REPORTED IN THE FORM OF Mean Scoretstd. IN THE PROPOSED
METHODS COLUMN, THE ITALIC SCORE IS OBJECTNESS METRIC
REPORTED IN THE FORM OF Objectness (Class Diversity)

Model | Scores
Unlabelled [
Infusion training [59] 4.62 £+ 0.06
ALI [60] (as reported in [39]) 5.34 + 0.05
BEGAN [16] 5.62
GMAN [61] 6.00 & 0.19
EGAN-Ent-VI [62] 7.07 £ 0.10
LR-GAN [63] 7.17 £ 0.07
Denoising feature matching [39] 7.724+0.13
Labelled [
SteinGAN [64] 6.35
DCGAN (as reported [64]) 6.58
Improved GAN [24] 8.09 £ 0.07
AC-GAN [9] 8.25 + 0.07
SGAN [57] 8.59 + 0.12
Proposed methods [
ArtGAN (baseline) o ?;%0980)
T T o oe |7 826010
s e 3351 (276.60)
8.43 +0.09
ArtGAN-AE 31.09 (262.04)
T T T s | 8.25%£0.09
,,,,, AMGANDIM | 33407499
8.50 4+ 0.06
ArtGAN-M 30.19 (256.62)
T T T T T T T 7T 8291010
ArtGAN-D 33.30 (276.15)
T T T o | 853%0.09 -
,,,,, ATGANAEM | 3007 @s62)
8.81 +£0.14
ArtGAN-AEMT 30,65 (269.83)
11.24 +£0.12
Real data 24.32 (271.76)

Although ArtGAN-EB performed better than ArtGAN with
higher Inception score (ArtGAN-EB 8.26 compared to
ArtGAN = 8.21), it has poor objectness score (ArtGAN-EB =
33.51 compared to ArtGAN = 33.24). It shows that the
class diversity score in ArtGAN-EB has affected the Inception
score. This is misleading because the combination of high
class diversity score and poor objectness score implies that
the objects in the generated images are hard to recognize.
Nonetheless, Inception score is still a preferred metric due to
the lack of a better alternative for quantitative measurement.
Hence, this paper adopts Inception score but the performance
assessment is done mainly based on the objectness score since
it is a more reliable metric.

In addition, the generated images will be illustrated for
visual inspection as human evaluation is always more accurate
when accessing the image quality, though can be subjective
at times. Furthermore, latent space interpolation is done to
“probe” the structure of the latent space z. Qualitatively,
the smooth transitions between samples when the latent space
is interpolated usually indicates how well the generative mod-
els understand the structure of the images.

C. CIFAR-10

CIFAR-10 [13] is a small, well-studied dataset consisting
32 x 32 pixels RGB images. It is split into 50,000 training
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Fig. 5. Comparison of generated CIFAR-10 images with (i.e. ArtGAN-M & ArtGAN-AEM) / without (i.e. ArtGAN & ArtGAN-AE) IQ strategy. Image class
from top to bottom: (1) Airplane, (2) Automobile, (3) Bird, (4) Cat, (5) Deer, (6) Dog, (7) Frog, (8) Horse, (9) Ship, (10) Truck. (a) ArtGAN (32 x 32).
(b) ArtGAN-M (64 x 64). (c) ArtGAN-AE (32 x 32). (d) ArtGAN-AEM (64 x 64). (Best viewed in color).

images and 10,000 test images from 10 classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

All ArtGAN variants are trained on full image size,
i.e.32 %32 pixels. When IQ strategy is employed, the generator
is able to generate images at a higher resolution (i.e. 64 x 64).
All models are trained for 70,000 iterations and saved every
1,000 iterations. As stated by Gulrajani et al. [36], Inception
scores of the generative models will continue to oscillate
with non-negligible amplitude at convergence. Hence, only
the best models found based on the objectness score are
reported in Table I along with the state-of-the-art results.
ArtGAN-AEMT obtains state-of-the-art result with a score of
8.81 £ 0.14, outperformed two latest methods - SGAN [57]
(8.59 £ 0.12) and AC-GAN [9] (8.25 £ 0.07). Qualitatively,
the proposed models also able to produce many samples with
high visual fidelity, especially when IQ strategy is employed

as shown in Figure 5. Particularly, the samples drawn by
ArtGAN-AEM have finer details, e.g. cats are more recogniz-
able with better ears shape (row 1 and 2), most of the frogs
are drawn with clear contour (row 2 and 3), etc.
Interestingly, SGAN [57] demonstrated subjectively better
image quality despite lower Inception score when compared
to the proposed ArtGAN-AEMT. In SGAN [57], similar loss
function is used for their conditional loss, i.e. cross-entropy
for labels. Hence, we deduce that network design and training
procedure (e.g. training the networks in a hierarchical manner
as in SGAN [57] and Progressive GAN [40]) are important fac-
tors for achieving better perceptual image quality. Meanwhile,
the proposed ArtGAN baseline has lower subjective image
quality and Inception score (8.21 £ 0.08) when compared
with SGAN. Hence, it is clear that the proposed IQ strategy
helps improve the Inception score but not the image quality.
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(b)

(a)

Fig. 6.

Comparison of generated STL-10 images with (i.e. ArtGAN-M & ArtGAN-AEM) / without (i.e. AtGAN & ArtGAN-AE) IQ strategy. Image

class from top to bottom: (1) Airplane, (2) Bird, (3) Car, (4) Cat, (5) Deer, (6) Dog, (7) Horse, (8) Monkey, (9) Ship, (10) Truck. (a) ArtGAN (64 x 64).
(b) ArtGAN-M (128 x 128). (c) ArtGAN-AE (64 x 64). (d) ArtGAN-AEM (128 x 128). (Best viewed in color).

We deduce that the higher feature dimension introduced by
1Q strategy complements the loss function by learning richer
representations. This encourages the generation of images that
are easy to categorize, resulting in higher Inception score.

D. STL-10

STL-10 [19] is a dataset inspired by CIFAR-10 with higher
image resolution (i.e. 96 x 96 pixels). However, it contains
fewer labelled training examples and has a very large set of
unlabelled examples. Although STL-10 is primarily used for
unsupervised learning, we employed the dataset for conditional
image synthesis in a supervised fashion. In particular, we only
employed the labelled examples during training, which con-
tains 5,000 samples from 10 classes: airplane, bird, car, cat,
deer, dog, horse, monkey, ship, and truck. As such, it makes
STL-10 a more challenging dataset than CIFAR-10.

During training, we randomly cropped 84 x 84 pixels from
the 96 x 96 pixels images. Then, the images are resized and
trained at 64 x 64 resolution. Meanwhile, the proposed models
trained using IQ strategy are able to generate samples at
128 x 128 resolution. All models are trained for 50,000 iter-
ations. Similar to CIFAR-10, models are saved every
1,000 iterations and the scores of the best models are reported.
The Inception scores are reported in Table II, while the
generated samples are shown in Figure 6. It can be noticed that
the synthetic images generated by ArtGAN-AEM trained with
1Q strategy are clearer and sharper without much artifacts. For
instance, the face features of the dogs are more recognizable
(row 1-3). No mode collapse is observed in this experiment.

TABLE I

INCEPTION SCORES ON STL-10 EVALUATED AT 64 x 64 PIXELS.
READERS MAY REFER TO TABLE I FOR SCORES DESCRIPTIONS

Model Scores
ArtGAN (baseline) 3‘(1):232 é(? 1‘.16%;)
adcanes | 97012
T anoanap | JSTE008
T AxGaNDRM | SO0
anganw [ 10122000
T aGand | SETEODS
ancanamn | 1007008

Real data 1155_(')i8(2i3g.‘17 g)

E. More Ablation Studies

In order to further understand the effects of different
ArtGAN variants, we conduct extensive ablation studies
by comparing the performances of the ArtGAN models on
CIFAR-10 (Table I) and STL-10 (Table II) datasets. Note
that the performances are evaluated based on the objectness
metric only, unless specified otherwise. Below we summarize
our findings.

First, the effectiveness of the IQ strategy can be assessed
by comparing ArtGAN-M with the baseline (ArtGAN) and
ArtGAN-D. Although ArtGAN-D has more parameters than
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the baseline, it does not exhibit overfitting problem since
its performance is similar to the baseline. We can notice
that ArtGAN-M outperformed the baseline and ArtGAN-D
significantly. This shows that the extra convolutional layers
in the generator are not the main factor that contribute to the
performance improvement when the IQ strategy is employed.
This is because both ArtGAN-M and ArtGAN-D have the
same number of layers, so it proves that the additional upsam-
pling layer introduced in the IQ strategy is the main reason
for the improvement. We deduce that richer representation can
be learned with higher feature dimension.

Second, ArtGAN-DFM performed poorer than the baseline.
In ArtGAN-DFM, the features fed to the denoiser are extracted
from the discriminator that is still in training mode. Hence,
we speculate that measuring the loss using these primitive
features might cause instability when training the denoiser and
generator. Therefore, we encourage to compute the losses by
leveraging the true data directly.

Third, inconsistent performance can be noticed in
ArtGAN-EB, where it performed best on one dataset but
worst on the other. This suggests that additional adversarial
loss does not always complement a model. This is because
the primitive adversarial samples may provide noisy informa-
tion that hamper the training process. ArtGAN-AE exhibited
more consistent performances with either better or comparable
scores. We also trained another variant using only the Energy-
based adversarial loss (i.e. traditional adversarial loss is
removed). Unfortunately, we found that this model failed
to learn, produced collapsed and meaningless images. This
deduces that traditional adversarial loss is still a better choice
for adversarial training.

Finally, ArtGAN-AEM (ArtGAN-AE with IQ strategy)
achieved the best results with consistent and significant
improvements. Meanwhile, ArtGAN-AEMT has the best over-
all Inception score on CIFAR-10 (8.81).

F. Oxford-102

Oxford-102 [20] consists of 102 flower species. Each cate-
gory has around 40 to 258 samples. The samples have large
variations in terms of scale, pose, and light. Beside this, some
categories exhibit very similar appearance to each other. The
model was trained for 30,000 iterations with learning rate
reduced after iteration 15,000. The images were saved at
256 x 256 resolution. During training, the images are randomly
cropped at 224 x 224, and then resized to 64 x 64.

Two experiments were conducted. In the first experiment,
batch size = 102 is used. In the generator, one sample is
drawn for each class during the training stage. We found
out that the image quality is high but it suffered from mode
collapse, i.e. the generated images look almost exactly the
same within a class. In the second experiment, 20 classes are
randomly chosen in each iteration and with this, 5 samples are
drawn for each class during the training stage. This solved the
mode collapse problem, suggests that more adversarial images
should be sampled for each class in the same iteration to learn
more diverse correlations between the latent codes and the
image space. Sample of the generated images are depicted

Fig. 7. Sample generated images on Oxford-102 flowers. Left (red box):
Groundtruth; Right: Generated samples. (a) Barbeton Daisy. (b) Oxeye Daisy.
(c) Globe Thistle. (d) Bougainvillea. (Best viewed in color).

© (d)

Fig. 8. Sample generated images on CUB-200 birds. Left (red box):
Groundtruth; Right: Generated samples. (a) Yellow Breasted Chat. (b) Pled
Kingfisher. (c) Pied Billed Grebe. (d) Western Meadowlark. (Best viewed in
color).

in Figure 7. Although the discriminator performed poorly on
the classification of flower species (~ 50% accuracy), Figure 7
shows that ArtGAN-AEM is able to generate high quality
flower images that look natural with distinctive species-typical
features, i.e. color and shape.

G. CUB-200

Caltech-UCSD Birds-200-2011 (CUB-200) [21] contains
11,788 samples from 200 bird species. The images are pre-
processed in the similar way as to Oxford-102, i.e. model is
trained at 64 x 64 resolution after cropping and resizing.

In order to avoid the mode collapse experienced in
Oxford-102, the model herein follows the same settings
(i.e. randomly choosing 20 classes in each iteration with
5 samples per class). The generated image samples are shown
in Figure 8. Similar to Oxford-102 dataset, the discriminator
has a poor performance on the bird species classification
(~20% accuracy). Interestingly, the figures show that
ArtGAN-AEM is still able to draw the characteristics of dif-
ferent bird species, e.g. colors, shape, and body size. However,
the body structures of the birds are not well-learned.
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Fig. 9.
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Wikiart dataset: Generated genres images at 128 x 128 pixels. Images in the red bounding box are groundtruth. Genres class from top to bottom:

(1) Abstract, (2) Cityscape, (3) Genre painting, (4) Illustration, (5) Landscape, (6) Nude, (7) Portrait, (8) Religious, (9) Sketch and study, (10) Still life. (Best

viewed in color).

H. WikiArt

Wikiart is a fine-art paintings dataset first introduced by
Saleh and Elgammal [23]. The paintings were obtained from
the wikiart.org website. Currently, Wikiart is the largest public
dataset available that contains around 80,000 annotated paint-
ings for genres, artists and styles classification tasks. However,
not all paintings are used in all tasks. To be specific, all
paintings are used for 27 styles classification. But, there are
only 60,000 paintings annotated for 10 genres, and only around
20,000 paintings are annotated for 23 artists. In this paper,
we used an extended version of Wikiart dataset.* The extended
dataset is randomly split to training and test sets for a fair
comparison.

The Wikiart images were prepared in 256 x 256 resolu-
tion. In this paper, however, at each iteration of the training
stage, we randomly cropped the images into 224 x 224
resolution. Since the proposed models are built on stan-

4https://github.com/cs—chan/ArtGAN

dard GAN, we experienced similar problem found in [11].
That is, the proposed models are prone to generate nonsensical
images when trained using 128 x 128 or higher resolutions
images. As a result of that, we resized the cropped images to
64 x 64 resolution. Three different ArtGAN-AEM models were
trained for different tasks (i.e. styles, genres and artists) for
50,000 iterations. The results are reported using the final model
(i.e. model at iteration 50,000). In general, it is observed that
ArtGAN-AEM is able to learn artistic representations and
generate high quality paintings. Detailed discussions are as

follows:
1) Genre: The generated paintings based on genre are

showed in Figure 9. Out of the three tasks, genres classification
can be considered as the most easiest task [55]. Hence, it is
expected that ArtGAN-AEM is able to draw many meaningful
paintings based on the genre. For instance, one should be able
to differentiate abstract paintings, cityscape, landscape, and
portraits from other classes easily. The synthesized paintings
show that ArtGAN-AEM is able to recognize and draw high
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Fig. 10. Wikiart dataset: Generated artists images at 128 x 128 pixels. Images in the red bounding boxes are groundtruth. Artists class from left to right, Top:
(1) Albrecht Durer, (2) Boris Kustodiev, (3) Camille Pissarro, (4) Childe Hassam, (5) Claude Monet, (6) Edgar Degas, (7) Eugene Boudin, (8) Gustave Dore,
(9) Ilya Repin, (10) Ivan Aivazovsky, (11) Ivan Shishkin, (12) John Singer Sargent; Bottom: (13) Marc Chagall, (14) Martiros Saryan, (15) Nicholas Roerich,
(16) Pablo Picasso, (17) Paul Cezanne, (18) Pierre Auguste Renoir, (19) Pyotr Konchalovsky, (20) Raphael Kirchner, (21) Rembrandt, (22) Salvador Dali,

(23) Vincent van Gogh. (Best viewed in color).

quality paintings on these genres. An interesting observation
can also be observed in the genre painting (i.e. No 3).
Not to be confused with “genre”, “genre paintings” is a
pictorial representation of scenes or events from everyday
life, such as markets, parties, etc. Hence, a group of people
is usually visible in this type of paintings. Figure 9 shows
that ArtGAN-AEM is able to draw several human-like
figures in a few synthetic paintings (i.e. column 5, 6 and
10 of No 3). The model may not be able to understand the

true meaning of genre paintings, but this observation shows
that ArtGAN-AEM is able to find certain semantic cues.

2) Artist: Figure 10 shows the synthetic paintings based on
artist. Learning visual representations in this task is possible
as artists usually have their own preferences when deciding
what to draw, what kind of styles to use, etc. Hence, many
visual similarities can be found from those artworks within
the same artist. For example, this can be seen in the paint-
ings of Nicholas Roerich. He is a Russian who settled in
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Fig. 11.

Wikiart dataset: Generated styles images at 128 x 128 pixels. Images in the red bounding boxes are groundtruth. Styles class from top to bottom,

Left: (1) Abstract Expressionism, (2) Action painting, (3) Analytical Cubism, (4) Art Nouveau, (5) Baroque, (6) Color Field Painting, (7) Contemporary
Realism, (8) Cubism, (9) Early Renaissance; Middle: (10) Expressionism, (11) Fauvism, (12) High Renaissance, (13) Impressionism, (14) Mannerism Late
Renaissance. (15) Minimalism, (16) Naive Art Primitivism, (17) New Realism, (18) Northern Renaissance; Right: (19) Pointillism, (20) Pop Art, (21) Post
Impressionism, (22) Realism, (23) Rococo, (24) Romanticism, (25) Symbolism, (26) Synthetic Cubism, (27) Ukiyo-e. (Best viewed in color).

Himachal Pradesh, India (a mountainous state) for a long
time. As a result of that, many of his famous masterpieces
depict the beauty of the mountains with expressive colors
and fluid brushwork. These characteristics appear in all the
synthesized paintings of Nicholas Roerich (i.e. No 15). At the
same time, all the synthesized paintings of Gustave Dore
(i.e. No 8) also clearly display his primary approach in
engraving, etching, and lithography, which result in grayish
artworks. However, the synthesized paintings conditioned on
Vincent van Gogh appear to be colourless (i.e. No 23). After
some investigations, we found an interesting fact that more
than half of his artworks were annotated as sketch and study
genre in the Wikiart dataset. Among all his artworks, most
Van Goghs palette consisted mainly of sombre earth tones,
particularly dark brown, and show no sign of the vivid colours
that distinguish from his later work, e.g. the famous The Starry
Night masterpiece. This explains the behaviour of the trained
model. But, this is still not competent as the striking colour,
emphatic brushwork, and the contoured forms of his work that
powerfully influenced the Expressionism style in modern art
is not well-learned by ArtGAN. Eugene Boudin is a marine
painter and he has always favoured rendering the sea and along
its shores in his artworks. Meanwhile, Ivan Shishkin became
famous for his forest landscapes. All these preferences can be
visualize in all the synthesized paintings of Eugene Boudin
(i.e. No 7) and Ivan Shishkin (i.e. No 11), respectively.

3) Style: Synthetic paintings based on style are shown
in Figure 11. Out of the three tasks, style is the most difficult
task. For instance, as highlighted in Section II, it is hard
to recognize Renaissance art. Beside that, it is also a very
challenging task to differentiate Baroque and Rococo as they
are historically related. Generally, they are differentiated by the
“feelings” they give to their viewers (i.e. curator). Baroque art
often depicts violence, darkness, and the nudes are more plump
compared to the Rococo artwork. During mid-1700s, artists
gradually moved away from Baroque into the modern Rococo
style. Rococo art was often light-hearted, pastoral, and a rosy-
tinted view of the world. A subjective observation can be seen
in Figure 11 such that Barogue synthetic arts (i.e. No 5)
are drawn using darker color than the Rococo counterparts
(i.e. No 23). The color intensity shows that ArtGAN-AEM has
managed to learn some of these characteristics. Meanwhile,
Ukiyo-e is a type of Japanese art flourished from the 17"
through 19" centuries. It is produced using the woodblock
printing for mass production and a large portion of these
paintings appear to be yellowish due to the paper material.
It is observed that such characteristics are generated in the
synthetic Ukiyo-e style paintings (i.e. No 27).

L. Latent Space Interpolation

In this section, we demonstrate that ArtGAN is not sim-
ply memorizing the training data, but can truly generate
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Fig. 12.

Interpolations over the latent space z in (a) Wikiart, (b) CIFAR-10, (c) STL-10, (d) Oxford-102 and (e) CUB-200 datasets. It demonstrates that

ArtGAN does not memorize the training data since samples show smooth transitions and each image looks plausible. (Best viewed in color).

novel images. Walking on the manifold of the latent space z
can examines the signs of memorization, i.e. sharp image
transitions along the latent space indicate high probability that
the model memorizes the true data space. This will be an
undesired property as it also implies that the relation between
the latent codes and image space is not well learned. Figure 12
shows that the generated samples have smooth semantic
changes and look plausible. For instance, the bird in the syn-
thetic images of CUB-200 rotated from left to right smoothly.
This confirms that ArtGAN is not memorizing and has learned
relevant, interesting, and rich visual representations.

VI. CONCLUSION

This paper proposed a novel GAN variant called ArtGAN
which leverages the labels information for better learning
representation and image quality. Empirically, it showed that
an extension of ArtGAN (i.e. ArtGAN-AEM) achieved state-
of-the-art results on CIFAR-10 and STL-10. Furthermore,
ArtGAN-AEM showed the superiority in generating high qual-
ity and plausibly looking images on Oxford-102 and CUB-200
datasets. Not to mention, the generated paintings showed that
ArtGAN-AEM is able to learn artistic representations from the
Wikiart paintings that are usually non-figurative and abstract.
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For future work, we are looking forward to extend the work for
other interesting applications, such as natural to artistic image
translation based on a desired semantic-level mode, e.g. style.
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