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The increasing number of cameras and a handful of human operators to
monitor the video inputs from hundreds of cameras leave the system ill
equipped to fulfil the task of detecting anomalies. Thus, there is a dire
need to automatically detect the regions that require immediate atten-
tion for more effective and proactive surveillance. A framework that
utilises the temporal variations in the flow field of a crowd scene to
automatically detect salient regions is proposed, while eliminating
the need to have prior knowledge of the scene or training. The flow
fields are deemed to be a dynamic system and adopt the stability
theory of dynamic systems, to determine the motion dynamics
within a given area. In this context, the salient regions refer to the
areas with high motion dynamics, where the points in a particular
region are unstable. The experimental results on public, crowd
scenes have shown the effectiveness of the proposed method in detect-
ing salient regions which correspond to an unstable flow, occlusions,
bottlenecks, and entries and exits.
Introduction: Conventional CCTV monitoring by human operators
becomes increasingly demanding as the average number of the
cameras deployed grows. The research findings have shown that
besides fatigue and boredom, human attention tends to decline after
20 min. Therefore, a high percentage of questionable activities are
often overlooked. This is made even more challenging when monitoring
crowded scenes such as the footage of a pilgrimage shown in Fig. 1a.
Anomalous activity or behaviour in a crowded scene can be very
subtle and imperceptible to a human operator [1]. Thus, an automated
detection of the suspicious regions is critical to direct the attention of
the security personnel to the areas that require further investigation. It
is useful in numerous applications, such as identifying bottlenecks,
which may help in avoiding congestion or evacuation planning.
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Fig. 1 Sample shots of the different scenarios of crowded scenes

a Pilgrimage
b Train station and
c Marathon
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Fig. 2 Sample comparison results for pilgrimage and marathon sequences
(with synthetic noise)

a In addition to ground truth unstable region (as enclosed in red and yellow
bounding boxes), our method detected salient regions caused by bottlenecks (as
highlighted in red blobs)
b Our method detects salient regions that may be caused by sudden slow down or
potential danger due to high densities and instability

Most work in saliency detection is focused on the detection of the
salient regions in an image, where the saliency originates from a
visual uniqueness and is often deciphered from the image attributes
such as colour, gradient and edges [2]. The saliency in an image
differs from the saliency in a video sequence and using the image attri-
butes alone is not sufficient to infer the motion dynamics of crowded
scenes. Boiman and Irani in [3] proposed a graphical inference algor-
ithm to detect irregularities in videos. Although their method works
well in detecting the irregularities in both the images and the videos,
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it is not utilising the benefit of the motion information from videos
and does not cope with large-scale crowd scenes.

Research into motion dynamics in dense crowds [4–6] is limited to
learning the coherent motion patterns or dominant crowd flows, where
the regions with a similar motion information are grouped into the
same cluster. In contrast, our method ignores the dominant flows and
instead is focused on the regions with high motion dynamics or hat
are unstable, to infer the salient regions. The closest work to ours,
thus far, is by Loy et al. in [7] where dominant flows are suppressed,
while focusing on the motion flows that deviate from the norm.
However, their method which is based on spectral analysis of the
motion flows is only reliable when detecting obvious saliency such as
crowd instability and counter flow detection. They do not deal with
the subtler scenarios of saliency such as bottlenecks. In [8], a set of
rules is applied to the eigenvalue map to discover the different motion
behaviours. Although their method is able to discriminate the different
types of saliency, it is restricted by the pre-defined conditions and
requires the characteristic flows. Our method on the other hand is not
restricted by the set of the rules, and assumes an anomaly when a par-
ticular region exhibits high motion dynamics.

This Letter extends the definition of the salient regions to include a
subtle anomaly which corresponds to the bottlenecks and the occlusions.
In addition, we introduce simple, yet effective idea of amplifying
regions with an unstable motion instead of disregarding them as
noise. This alludes to the social behaviour of humans in crowds. In a
dense crowded scene, the motions of individuals tend to follow the
dominant flow of a particular region due to the physical constraints of
the environment (i.e. path and junction) and the social conventions of
the crowd dynamics. We can therefore consider the possibility of irregu-
larities or anomalies occurring, when the motion dynamics of individ-
uals differs from its close neighbours. In our Letter, we first magnify
and then examine the unstable regions by performing a two stage seg-
mentation process to infer the salient regions. Our method does not
rely on tracking each object or on prior learning, thus it can adapt to
the environment over time and is more practical for real-time
applications.

Magnification of the unstable flow: We estimate the velocity field at
each point, V(p) = (u, v) by employing the dense optical flow algorithm
in [9], and estimate the average velocity within an interval of τ frames

V = {u, v} = 1

t

∑t+t

t

up,
1

t

∑t+t

t

vp

{ }
(1)

Although the mean velocity field may be a good indicator of the global
flow of the individuals in a crowd, it is unstructured and may change
over time. A particle advection process is implemented to keep track
of the velocity changes for each point, p along its velocity field, (u, v)
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subject to

p = p0 at t = t0 (4)

The suffix p indicates the motion of a particular particle or point, p.
Assuming that the initial position of p0 is the mean velocity fields,
(u, v), we deem the dynamic system as an initial value problem.
Thus, the pathlines which trace the points from their x0 and y0 positions
at time, t0 to their positions, xt and yt at time, t can be solved by using the
fourth-order Runge–Kutta scheme (RK4) in [10]. We adopted the
Jacobian method in [11], to measure the separation between the par-
ticle’s pathlines which are seeded spatially close to a point, p, within
a time instance, τ. The Jacobian of the flow map is computed by the
partial derivatives of dx and dy, where
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According to the theory of linear stability analysis, the square root of the
largest eigenvalue, λt(p) of Ft(p)

TFt(p) indicates the maximum
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displacement, if the particle’s seeding location is shifted by one unit as it
satisfies the condition that lnλt(p) > 0. In the context of this Letter, a
large eigenvalue indicates that the query point is unstable, and vice
versa for a small eigenvalue. Note that in contrast to the existing sol-
utions, where the high motion dynamics are regarded as noise and
thus removed, our method exploits these unstable regions. We estimate
the dynamics of a point within its spatially close neighbouring points by
its stability by using equation
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1
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������
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We propose two stages of segmentation that combine the outputs of fine
and the coarse segmentation obtained from the local and the global flow
segmentation steps, followed by a flow magnification of the regions with
a high motion instability to synthesise the signal, where β is the magni-
fication factor and α is the segmentation threshold.

f̂ t = bft , if ft ≥ a
(1− b).ft , otherwise

{
(7)

Experiment: instability detection: A set of four test sequences which
comprises of large-scale crowd scenes was used for evaluation. The
first sequence is obtained from the National Geographic documentary,
‘Inside Mecca’, whereas the second depicts a marathon scene.
Synthetic noise was injected into both the scenes to simulate instability
in the motion of the crowd. A comparison between our Letter, Loy et al.
[7] and Ali and Shah [4], is performed. It is observed that all the three
methods are able to detect instability successfully as indicated by the
red bounding boxes in Fig. 2. However, our method identified additional
regions as salient. After a thorough investigation of the original
sequence by three operators, we noted that these regions correspond
to areas where there strong interactions and motion dynamics within
the crowd. It is worth noting that a manual annotation of the ground
truth salient region due to bottlenecks or turbulence is an open issue
because these types of salient regions are considered subjective. In the
pilgrimage sequence, we noted that the additional salient regions
detected by our method in fact do correspond to the regions where
there are strong interactions and motion dynamics. Owing to the struc-
ture of the scene, or the physical constraints of the Kaaba which is situ-
ated at the centre of the scene, the crowd tended to slow down their pace
during the turning. In addition, the salient region detected near the syn-
thetic instability is caused by high motion dynamics near the entry and
exit points. Thus, we argue that it is unfair to deem these detections as
false positive. Instead, we presuppose that the detected regions can aid
us in investigating and understanding the non-obvious motion dynamics
of a scene.
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Fig. 3 Sample comparison results (without synthetic noise)

a Subtle saliency due to bottlenecks are detected by our method, whereas state-
of-the-art methods fail to detect these variations of saliency
b Subtle saliency due to high densities and stop-and-go waves state-of-the-art
methods fail to detect such saliency

Bottleneck detection: We further validated the capability of our method
in detecting subtle saliency by using the original sequences, where no
synthetic instability is introduced, as shown in Fig. 3. The detections
of the bottlenecks have tremendous potential as an indication of impend-
ing danger such as a stampede or overcrowding taking place, due to the
stop-and-go waves or sudden build up in the crowd motion.

Occlusion and turbulence detection: We further tested the robustness of
the proposed method by using other scenarios of large-scale crowds; the
school of fish and the marathon sequence (where there is a lamp post
obstructing the flow); the results are shown in Fig. 4.
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Fig. 4 Qualitative results on other scenarios of saliency by our method

a Detected regions grow across frames as motion dynamics of school increases.
This sequence comprises of school of fish manoeuvring towards centre of scene
b Street light which simulates scenario of occlusion or barrier, is detected

Conclusion: We have proposed a framework that detects the salient
regions by observing the flow activities in a given scene with minimal
observations. In addition, the proposed method eliminates the need to
track each object individually or prior learning of the scene, which is criti-
cal for a real-time operation. The experimental results show that the pro-
posed method is not only able to detect the salient regions that correspond
to a clear instability, but also the bottlenecks and the occlusions which is
often difficult to be noticed by the naked eye. The promising results
obtained are definitely worthy of future investigation since it is able to
detect the regions that would otherwise go unnoted by the human oper-
ator. The capability of the proposed method in spotting the patterns of
crowd activities that are subtle play a very important role in triggering a
real-time alarm to alert of potential danger such as stampedes, failed eva-
cuations and crushes for operational decision making.
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