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Abstract—To be able to perform human action recognition
from multiple views is a great challenge in the field of computer
vision. State-of-the-art solutions have been focusing on building
a 3D action model from multiple views in a multi, calibrated
cameras’ environment. Promising results were achieved; however,
these approaches tend to assume that human action is performed
frontal-parallel to each of the multiple cameras. In a real world
scenario, this is not always true and the overlapping regions in
such systems are very limited. In this paper, we proposed a fuzzy
action recognition framework for multiple views within a single
camera. We adopted fuzzy quantity space in the framework and
introduced a new concept called the Signature Action Behaviour
to model an action from multiple views and represent it as
fuzzy descriptor. Then, distance measure is applied to deduce
an action. Experimental results showed the efficiency of our
proposed framework in modeling the actions from different
viewpoints and styles.

I. INTRODUCTION

Human motion analysis (HMA) is one of the very popular
researches nowadays due to wide spectrum of applications.
The usages of HMA system cross over many domains, for ex-
amples, in video surveillance, healthcare, gaming, sports, and
military activities. Unfortunately, variation in human appear-
ances, sizes, postures, and individual styles when performing
an action makes action recognition a daunting task. Besides
that, actions perform from different viewpoints has made the
problem harder. Fig. 1 illustrates the variation of motion
patterns of an action performed from different viewpoints in
a single camera.

Though, most state-of-the-art view-invariant human motion
analysis [1]–[5] are found to be deviated from practical
solution to serve the purpose. Most of the works assumed that
the subjects always perform an action frontal-parallel to the
camera; and so built a 3D action model as an action template
for matching purpose. This assumption has few limitations.
First of all, in a real world environment, subjects are not
always frontal-parallel with respect to each of the cameras.
Secondly, it is very rare to find a multiple cameras system in
public space that has many overlapping regions. Authorities
always tend to cover as much areas as possible with a limited
number of cameras. The existence of a region that overlaps
with multiple cameras, from different viewing angles and the
appearance of a subject performing an action that is frontal-
parallel to the such cameras are very limited. Therefore, the

Fig. 1. Motion History Image of ‘wave hand’ action from different
viewpoints. It can be noticed that the motion patterns are differed from each
other in different subject viewpoint within a single camera.

3D action model that was built based on the above assumption
might not work in a real world environment.

With the aforementioned problems, hence, there is a need to
have a HMA system for multiple views within a single camera
to handle view-invariant action recognition. In this paper, our
works focus on HMA system from a single camera and the
challenges here is to develop a framework that is able to model
and recognize human action performed in different viewpoints
and styles, within a single camera. What makes our works
different from the others is we intend to model the same action
from different viewpoints using the information extracted from
the viewpoint itself instead of correlating the information from
multiple cameras in a closed controlled environment.

The proposed framework adopted Fuzzy Quantity Space



(FQS) which is built on top of fuzzy set theory [6] and fuzzy
qualitative reasoning (FQR) [7], [8] which are able to cope
with uncertainties and ambiguities. Readers are encouraged
to refer to [9] for the recent advances in fuzzy qualitative
reasoning. First of all, we introduced a novel concept named
Signature Action Behaviour (SAB) to capture the significant
characteristic of an action and apply fuzzy descriptor to rep-
resent it. Secondly, for each action from different viewpoints,
we built a Fuzzy Descriptor Action Model (FDAM). Finally,
distance measure is employed to deduce an action.

In summary, our contributions are: 1) we proposed a fuzzy
action recognition framework for multiple views within a
single camera. This is in contrast to conventional solutions
which focused on multiple views from multiple cameras. 2)
we introduced SAB to capture the motion performed in a
particular view; and FDAM to model actions from multiple
views.

The rest of the paper is organized as follows. Section II
covers the related works in HMA. Our proposed framework is
discussed in section III which consists of the pipeline to obtain
fuzzy descriptor to represent an action. Section IV explains
how we build the FDAM for the actions and viewpoints by
combining them together in a manifold model. Section V
describes how action classification is done by comparing the
fuzzy descriptors using distance measure. Section VI discusses
the experiments settings and results. Finally, we conclude with
suggestions of future work in Section VII.

II. RELATED WORKS

HMA in computer vision has been studied extensively for
decades due to the demand and promising growth in high
specification of camera technology. Comprehensive surveys of
the trends in HMA can be found from [10]–[13] and the survey
that closer to our work is [14]. Previous works in HMA can
be categorized into two categories which are view-dependent
and view-independent approaches.

Most of the works fall into the former categories which as-
sume that all actions are performed with a fix viewpoint [15]–
[18]. Notable works in space time approach such as [15] that
uses temporal information to build two dimensionary binary
of foreground images called Motion-energy image (MEI) and
scalar value of foreground images called Motion-history image
(MHI) to represent an action, template matching is applied to
the pair of MEI and MHI which provides promising results
in recognition of a series of ballet actions. [17] proposed
an approach which utilizing Poisson solution to estimate the
moving torso and protruding limbs that are useful for action
recognition, detection and clustering. [16] extended the idea
of spatial interest points into spatio-temporal domain where a
descriptor is built to classify an event.

With more relate to our works, fuzzy approaches [18], [19]
have shown some promising results in HMA. They proposed
a tractable and feasible action recognition algorithm which
combine fuzzy qualitative robot kinematics [20], [21] with
human motion tracking and recognition algorithms. In their
works, they adopted FQS [22] to relax the computational

complexities suffering from visual tracking algorithms while
preserving the accuracy in action recognition. However, the
aforementioned approaches are suffered from the limitation of
viewpoint variation. They assumed that the subject performs
in a static viewpoint which normally the interesting features
can be extracted easily.

While in the latter category, most of the works focus
on multiple cameras approaches to achieve view invariant
action recognition [1]–[5]. One of the drawbacks of using
multi-camera approach is, it is only applicable to closed
controlled environment. It may be impractical to deploy in
a real world environment. In these approaches, 2D models
are extended into 3D models to reconstruct human shape in a
volumetric space. For examples, [1] built a 3D representation
of human using multiple cameras called voxel person. They
extract simple cues from the voxel person and deduce falling
activity with fuzzy logic approach. In [4], they propose a
new framework that model actions using 3D occupancy grids,
built from multiple viewpoints in an exemplar-based HMM.
For recognition, the 3D exemplars are used to produce 2D
image information for matching purpose. On the other hand,
[5] overcomes the viewpoint invariant problem by introducing
the extension of standard epipolar geometry to the geometry
of dynamic scenes where the cameras are moving to study the
action.

Although the above mentioned approaches achieved sig-
nificant results in recognition, they still require information
from different viewpoints when an action is performed and
these information must be correlated with other cameras from
different viewpoints to train and deduce an action, especially
the frontal camera provides most information in extracting
useful features for an action. In this paper, we remedy these
limitations by proposing a framework to model human action
from multiple viewpoints and perform recognition within a
single camera. The respective models for each action from
different viewpoints are built and represented by fuzzy de-
scriptors that will be explained in more details in following
sections.

III. OVERALL FRAMEWORK

In this work, we developed a framework that is able to
model human action from different viewpoints within a single
camera. For ease of understanding, by referring to Fig. 2,
we predefine the viewpoints from left to right as ‘horizontal
view’, ‘diagonal view’ and ‘vertical view’, respectively; and
represented with v = {1 · · ·V }, where in this paper, V = 3.
These viewpoints will be used throughout the explanation and
the experiments in this paper. The overall framework is shown
in Fig. 3.

With reference to Fig. 3, given a video sequence, let us
denote it as a sequence of frames, I1···N , where N is the total
number of frames and In indicate each frame. To begin with,
we first apply viewpoint estimation function, E to the video
in order to estimate the subject viewing direction, v (Eq. 1).

E : I1···N → v (1)



Fig. 2. Definition of viewpoints, from left to right, ‘horizontal view, v1’, ‘diagonal view, v2’ and ‘vertical view, v3’.

Fig. 3. Overall framework of proposed method.

where v ∈ V is the output of estimated view that will be
used to determine the corresponding FDAM and finally the
recognition result is obtained by selecting the shortest distance
between the fuzzy descriptor generated from the video and
from the corresponding FDAM. However, in this paper, we
assumed that prior information of the viewpoints is given;
therefore the work is focused on how we build the FDAM
that is efficient to model human actions from different styles
and viewpoints.

Fig. 4. Fuzzy descriptor generation pipeline.

In order to obtain FDAM, we generate fuzzy descriptor to
represent each of the actions performed from each viewpoint
(Fig. 4). Our fuzzy descriptor generation process cycle in-
cludes feature extraction, FQS mapping of extracted features
values, and at last we discover the SAB. Further explanations
for each of these steps are in following sections.

A. Feature extraction

Feature extraction is a vital step here where the features
are the elements that we wish to model and represent them in
a meaningful way that can be used to signify an action. We
apply feature extraction function, T on each frame, In and the
output yields a feature vector for each frame with RM where
M indicates the total number of features. Putting together all
the feature vectors extracted from all the frames, we obtained
a matrix of RM×N (Eq. 2).



T : I1···N →


f11 f12 · · · f1N
f21 f22 · · · f2N

...
...

. . .
...

fM1 fM2 · · · fMN

 (2)

In our proposed framework, it accepts any appropriate fea-
tures, for instance, shape representation, motion flow, texture,
etc. provided that they are able to describe an action. In this
paper, we capture shapes and motion patterns with the aid of
Poisson equation [26] and motion estimation [24]. The output
from this step will be mapped into FQS to discover SAB in
following sections.

B. Fuzzy Quantity Space Mapping

FQS [22] is generated by a finite discrimination of the
underlying range of each variable of a system being modeled.
The FQS will have the desirable properties of finiteness and
coverage, as long as the system contains a finite number of
variables. Granularity in the FQS is obtained by the arbitrari-
ness of the discrimination of the numeric ranges of system
variables that are assumed to be of interest. Hence, a subset
of a numeric range can be translated to one qualitative value
according to what is needed in a particular modeling process.
The adoption of fuzzy subsets has a direct distinct advantage
over the traditional crisp representations when considering
granularity.

In fact, if one intends to describe the qualitative values of
system variables only in terms of the crisp subsets of the
underlying real range of the variables, the mapping from the
real range to a quantity space will result in the search for the
limits of the real numbers served as the boundaries between
(dis-jointly) adjacent qualitative values within the quantity
space. This usually incurs severe difficulties in determining
these limits [8]. The fuzzy representation of qualitative values
is more general than ordinary (crisp) interval representations,
since it can represent not only the information stated by a well-
determined real interval but also the knowledge embedded in
the soft boundaries of the interval. Thus, FQS removes, or
largely weakens (if not completely resolving), the boundary
interpretation problem, achieved through the description of
a gradual rather than an abrupt change in the degree of
membership of which a physical quantity is mapped onto
a particular qualitative value. It is, therefore, closer to the
common sense intuition of the description of a qualitative
value.

The construction of FQS utilizes a parametric approxi-
mation of the membership function where the membership
distribution of a normal convex fuzzy number is approximated
by the 4-tuple, [a, b, α, β] [22]. In this paper, we represent the
x-axis of the FQS as in [23] with Eq. 3 and it is normalized to
be in the range of [0 1]. This means that the features that we
extracted must be also normalized before we can map them
into FQS.

FQSx = {QST 1
x , QST

2
x , · · · , QST J

x } (3)

where QSTx are the fuzzy qualitative states [23] along the x-
axis, and J is the total number of QSTx. From the previous
step, we obtained the feature matrix. In this step, we map
the normalized values of each feature, fm across the frames,
1 · · ·N , into FQS (Eq. 4) as shown in Fig. 5 (a simulated
image described the mapping of feature values into a FQS).

fm(1···N) 7→ FQSx
fm (4)

after the mapping is done, we are able to perform frequency
counting of the number of data that falls into each fuzzy
qualitative state denoted as q(QSTx) and the outcome of the
mapping of each feature in FQS is designated as Eq. 5.

FQSfm = {q(QST 1
x ), q(QST

2
x ), · · · , q(QST J

x )} (5)

The intention of using FQS in modeling feature values for
an action is because with fuzzy tuple, we can model the
uncertainties within a tolerance range for the feature values
and at the same time we are able to retrieve the information
about which QST is involved. This information will be used
in next section to discover the SAB.

C. Discover Signature Action Behaviour

When human performing an action, we infer an action by
observing the characteristic of a series of motion within a
short period. Within this moment, we will conclude an action
by understanding the behaviour of the motions. For example,
if a person is repeatedly raising and put down the hand, we
understand that it is a waving action. Where in here, raising
and put down motion we consider as signature behaviour for
the waving action. In computational aspect, using the same
example, if a motion detection algorithm is able to provide
us the measurement of these information over a normalized
scale, we consider that the prominent density on this scale are
assumed to be the signature behaviour of the particular action.

This is what inspired us to propose the concept of capturing
SAB to represent an action. With continue from the previous
step, we compute the weight for each QSTx, denoted as Wj

by normalize all the q(QSTx) with the maximum q(QSTx)
as in Eq. 6.

Wj =
q(QST j

x)

max(q(QSTx))
(6)

after that, SAB is discovered by finding the QSTx(s) which
own the W that is > Thres, where Thres represent the
threshold defined by user and in this work, we use Thres =
0.7. We designated SAB for each action as Dfm as in Eq.
7. From here, one can notice that the element of Dfm can be
more than one, provided the W value of the QST is more than
the threshold. The intention is we do not ignore any potential
QST that can be SAB.

Dfm = QSTx(W > Thres) (7)

For example from Fig. 5, the SAB for that particular
feature most likely fall into QST 18

x , and QST 19
x as both



Fig. 5. Simulation of feature values mapping into FQS with number of QSTx, J = 25. From here, we observe that the state QST 18
x and QST 19

x possess
highest density among the other states.

fuzzy qualitative states possess high density compare to others.
Conceptually SAB is a significant representation of an action
performs by a subject. Ideally if this is compared with another
subject who is also performing similar action, the similarity
will be higher than compared to the other actions.

D. Building Fuzzy Descriptor Model

The significant differences between fuzzy descriptor, FD
compared to other conventional descriptors are, fuzzy descrip-
tor allows the occupancy of multi-instance SAB for each
feature. This mean that the element of Dfm can be more than
one as stated above. In order to form a complete descriptor,
we repeatedly discover the SAB for the rest of the features
and concatenate them together as Eq. 8.

FD = {Df1 , Df2 , · · · , DfM } (8)

Fuzzy descriptors are used to compare actions between the
testing video with the corresponding FDAM determined by
the estimated viewpoint. By measuring the distances between
them, the shortest distance is deduced as the most likely action
that this subject is performing.

IV. BUILDING ACTION MODEL

In this section, we intend to build FDAM that significantly
represents the actions from different viewpoints and at the
same time manage to cope with style invariant issue. Similar
to other supervised methods, in order to achieve that, we need
to have training samples. The training samples are represented
by human as subject, so where o = 1, 2, · · · , O that performs
an action ar where r = 1, 2, · · · , R from view, v1, v2, · · · , vV .
With reference to Fig. 6, we apply previous steps to all the
training subjects for all the actions and viewpoints to generate
the respective fuzzy descriptors and then combine them into a
manifold model, which we called it as FDAM (ref to Fig. 6).

In nature, different human tends to perform an action with
varieties of styles. The difference of styles including physical
differences (such as human appearances, sizes, postures, etc.)
and dynamic differences (speed, motion pattern, etc.). In order
to model these variations, our framework constructs a fuzzy
descriptor to represent an action that is tolerance with different
styles. The adoption of FQS provides the capability to cover

and model the small differences in the features values extracted
from an action and this is to cope with dynamic differences
in action.

As aforementioned, we tend to obtain variation of QSTx
as SAB in respective Dfm due to different styles. For in-
stance, different QSTx we might obtained from people who
performed waving with right hand and with left hand (physical
difference). Herein, we use Union aggregation to fuse them
together (Eq. 9), as in heuristic understanding, both are per-
forming the same action.

DUfm =

O⋃
o=1

{Dfm}so (9)

The same goes to the SAB for other features. Finally, we
concatenate all these DUfm to construct the fuzzy descriptor
for an action at the particular view and represent it as (Eq.
10).

FDAMarv = {DUf1 , DUf2 , · · · , DUfM }arv (10)

Finally, we obtain the FDAM for different actions and from
different viewpoints.

V. ACTION RECOGNITION

In this section, we are going to explain how to perform
action recognition from the FDAM. First we need to estimate
the view, v of the action (Eq. 1). The estimated v is used to
determine the FDAM that will be used in the inference step,
then distance measure is applied to deduce an action. Let us
denote the testing sample as G while the action model as H .

With fuzzy descriptor, ordinary distance measure may not
work if the SAB element is more than one. Instead, we use
Eq. 11 to obtain the minimum L2-norm of both SAB from
testing sample, DG and the action model, DUH .

d(DG, DUH) = min
x∈DG,y∈DUH

[d(x, y)] (11)

To measure the distance between the fuzzy descriptor of the
training sample, FDG and action model, FDAMH

arv (assume
that v is known), we sum all the L2-norm of SAB as Eq. 12.



Fig. 6. Building of FDAM by constructing the fuzzy descriptor for each action a across the subject s1 to sO . The process is repeated to obtain the action
model for v1···V . .

dist(FDG, FDAMH
arv) =

M∑
m=1

d(DG
fm , DU

H
fm) (12)

The final result is inferred by finding the minimum distance
between the fuzzy descriptor of the actions (Eq. 13).

result = ∀ar∈R min[dist(FDG, FDAMH
arv)] (13)

The result indicates the particular fuzzy descriptor to be
the nearest toward fuzzy descriptor for the respective action
in FDAM with shortest distance. And thus, the system output
it as the result of most likely action performs by the testing
subject.

VI. EXPERIMENT

In order to test the efficiency of our proposed framework,
we employ IXMAS action dataset which is available pub-
licly from (http://4drepository.inrialpes.fr/public/viewgroup/6)
in our experiments. From the dataset, we selected 11 actors,
5 actions (a1 = scratch head, a2 = sit down, a3 = get up,
a4 = wave hand, and a5 = kick), and the 3 subject viewpoints
as defined in Fig. 2. As for the FQS, we have chosen 25
tuples (J = 25) to represent the feature values. In the pre-
processing step, we obtain the silhouette image of the subject.
According to [25], silhouette image is sufficient to capture
the activity describe by a frame sequence, and at the same
time conserve the computational time. In feature extraction, we
extract the shape features and the motion patterns of different
parts of the limbs of a body but not limited to. As a reminder,
reader can use other appropriate features to incorporate with
our framework.

Adopting the idea from [24], we segment the human body
into four parts. From there, we determine the motion of right

(a) [24]’s method

(b) Our method

Fig. 7. Comparison of the methods used to perform segmentation of body
into four parts.

hand (Top Left segment), left hand (Top Right segment),
right leg (Bottom Left segment) and left leg (Bottom Right
segment). However, in [24], they used an inappropriate method
to determine the middle point to make the segment. This could
end up with inappropriate estimation of the body segment. In
this paper, we adopted Poisson solution [26] to estimate the
lower part of the torso of a human body and use it to segment



Fig. 8. The middle lower part of torso estimated using Poisson equation (denoted as a black dot). It is proved that this technique works on human with
variation of sizes, heights, and postures.

the human body into four parts. We anticipated that this will
be able to handle different human anatomy, e.g. body sizes,
heights, and postures) as shown in Fig. 8.

Fig. 7 shows the comparison of body segmentation using
the method from [24] and our method. We observed in Fig.
7(a) that body with portions of the hand falls into Bottom
Left segment and Bottom Right segment which in ideal case,
only legs are required in these segments. While on the other
hand, Fig. 7(b) shows our method estimates the body segments
correctly. Then, a feature vector is extracted for each frame.
In classification, we applied ‘leave-one-out’ approach to test
the efficiency of our framework.

A. The accuracy of action recognition

Fig. 9 shows the average accuracy of the recognition of five
actions and from three viewpoints.

Fig. 9. Bar chart of recognition accuracy for action a1, a2, a3, a4, and a5
perform with view1, v1, view2, v2, and view3, v3.

From the results, we observe that action such as ‘get up’,
‘wave hand’ and ‘kick’ are much consistent and have better
recognition rate; while the ‘scratch head’ and ‘sit down’
actions obtain lower accuracy. We anticipate that these actions
might confuse with other actions which are similar enough to
deduce a false positive results. These will be explained in more
detail in next section where we show the confusion matrix of
recognition for actions from different viewpoints.

B. Confusion matrix for action recognition

Here, in more detailed comparison, we show the confusion
matrix of action recognition results for different viewpoints
individually. However, in this comparison, sum of each row
may be more than one because there might be repeated results
on different action, for example, action a1 can be detected as
a1 and also a5. However, these are just minor cases.

TABLE I
CONFUSION MATRIX OF RECOGNITION RATE FOR v1

a1 a2 a3 a4 a5

a1 0.4545 0 0 0.8182 0.0909
a2 0 0.6364 0.0909 0 0.6364
a3 0 0 0.9091 0 0.0909
a4 0.3636 0 0 0.9091 0
a5 0 0.4545 0.0909 0 0.6364

TABLE II
CONFUSION MATRIX OF RECOGNITION RATE FOR v2

a1 a2 a3 a4 a5

a1 0.6364 0 0 0.4545 0.0909
a2 0 0.5455 0 0.1818 0.4545
a3 0 0 0.7273 0.1818 0.0909
a4 0.1818 0 0 0.9091 0
a5 0 0 0 0.0909 0.9091

TABLE III
CONFUSION MATRIX OF RECOGNITION RATE FOR v3

a1 a2 a3 a4 a5

a1 0.6364 0 0.1818 0.2727 0.0909
a2 0.0909 0.6364 0 0 0.2727
a3 0 0 0.9091 0 0.0909
a4 0.2727 0 0 0.9091 0.0909
a5 0.1818 0.0909 0 0.0909 0.8182

From the confusion matrices, we notice that action a1 which
is ‘scratch head’ is always confused with action a4 which is
‘wave hand’. We know that, these two actions are very similar
in terms of the motion pattern. Especially in view v = 1, it
is very difficult to differentiate these two actions as they were
preformed from the side. With reference to Fig. 10, this is
reasonable as in real environment, human have difficulty to
see the action from this viewing direction too.

On the other hand, the best recognition rates are from view
v = 3 because all actions are performed facing the camera



(a) Scratch head (b) Wave hand

Fig. 10. Example of frames for ‘sratch head’ and ‘wave hand’ action.

and therefore, our proposed framework is able to model the
action efficiently. Fortunately, the results have proven that our
proposed framework owns the potential to model and infer the
actions that were performed with different styles and subject
views.

VII. CONCLUSION

In this paper, we presented a framework to model the actions
performed from different viewpoints within single camera.
The actions are represented with fuzzy descriptor which is
built on top of the novel concept called SAB. The adoption
of FQS in our framework endowed the ability to model the
actions with variation of styles. Finally, we build FDAM which
consists of the action models from different viewpoints. In
action classification, fuzzy descriptors are used to measure
the distance between the testing subject with the FDAM by
using the distance measure explained in the context. Shortest
distance determines the final output of the recognition result.
The experiments showed the efficiency of our framework to
model and recognize the action of different styles and different
viewpoints in a single camera. In future, we are going to
investigate the relationship and correlation between the fuzzy
descriptors of the viewpoints and build a manifold descriptor
to indicate an action instead of having separate view models
for every action.
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