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ABSTRACT
Current zero-shot learning methods relied on attributes to de-
scribe the unseen class characteristics, using the learned seen
class model. However, these approaches required extensive
attribute labels on each object class, and a well-defined, at-
tributes relationship between the seen and unseen class with
the aid of human knowledge. In this work, we avoid these
with a novel learning process using the probabilistic Latent
Semantic Analysis (pLSA). We replace the attributes with
topic model and extend the representation as a mapping al-
gorithm to object classes, so that zero-shot learning would be
possible. With this, less annotated class information is re-
quired to achieve similar performance. Evaluations on three
public datasets had shown the effectiveness of our proposed
method.

Index Terms— Zero-shot learning, pLSA, object detec-
tion, object recognition

1. INTRODUCTION

In a real time situation, there is a large amount of object
classes that required to be recognised by humans. However,
in the event of an unknown object class, humans tend to em-
ploy existing object class that one understands and finds a re-
lationship between them to describe the unknown class. As
an example in Figure 1, an unknown class ‘mule’ can be de-
scribed by using the ‘horse’ and ‘donkey’ class, respectively.
This is how zero-shot learning arises.

Current zero-shot learning approaches have been very
much focused on using attributes as the image feature de-
scriptions [1, 2, 3]. These approaches had shown promising
results. However, they required extensive attribute labels on
each object class, and a well-defined, attributes relationship
between the seen and unseen class. This is impractical as it
requires exhaustive human interventions. Besides that, there
are object classes that are difficult to be described using such
attributes relationship.
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(a) Horse (b) ? (c) Donkey

Fig. 1: Zero-shot learning example. To learn the unknown
class (b), we relate it to known class (a) horse and (c) donkey.

In this paper, we attempt to tackle these problems by em-
ploying the pLSA model and relate the unseen class by a
novel mapping algorithm using the signature topics set. Our
proposed approach, first, build a Bag-of-Words (BoW) repre-
sentation from the seen class image features. Then, a pLSA
model is learned from the BoW. Finally, we deduce the signa-
ture topic mapping for the unseen classes based on the learned
pLSA model, and so zero-shot learning can be performed.

1.1. Contributions of the work

Zero-shot learning receives wide attention in recent years.
Palatucci et. al [4] investigated this problem in missing word
classes that semantically related, following by Lampert et. al
[5] that studied unseen object class based on attributes. Un-
like [5], Parikh and Grauman [1] extended the attributes’ per-
formance in zero-shot approaches with the introduction of rel-
ative attributes, while [3, 6] focused on large-scale dataset
problems. Although attributes seem a very efficient way to
perform zero-shot learning, it has two major limitations. In
the former, the dataset needs to be intra-class, while in the lat-
ter, binary or relative relationship between all classes need to
be defined. One must note that such a process requires very
extensive human supervision efforts. In here, our first con-
tribution: topic model - we replace the attributes with topic
model so that less annotated class information is required to
achieve similar performance [1, 5]. To our very best knowl-
edge, this is the first attempt to use topic model in zero-shot
learning.



Topic models are widely applied in image classification
[7]. The topic models are particularly effective when pairing
with BoW representation, where the models group ambiguous
codewords together and generate a topic distribution over a
codebook. One of the most popular topic models is pLSA [8]
which serves as a mid-level clustering method and tries to find
the relationship of codewords. The codewords are grouped to-
gether for common yet meaningful representations. Besides
pLSA, Latent Dirichlet Allocation (LDA) [9] is also a well-
known variant of topic models. Our second contribution:
pLSA - we employ pLSA to replace the attributes during the
zero-shot learning. We choose pLSA because it doesn’t re-
quire any prior information compares to LDA model. We also
further extend the topic model representation as a mapping al-
gorithm to object classes, so that zero-shot learning would be
possible. With this, the requirement of human supervision is
reduced, as well as handling the inter-class variation problem.

2. METHODOLOGY

2.1. BoW model and pLSA

We first build a BoW model to represent images. Specif-
ically, we use the Pyramid Histogram of Gradient (PHOG)
[10]. However, we didn’t concatenate all the HOG descriptor
found. Instead, we put all the features in a codebook learn-
ing mechanism using the Random Forest (RF) similar to [11].
Therefore, we can obtain a set of HOG descriptors that quan-
tize shape information locally and globally by the nature of
the PHOG. The RF codebook can learn image shapes as a
whole, as well as local patch characteristic.

Then, we learned the pLSA model using the built BoW.
The topic-specific image distribution p(z|d) is learnt as

p(w|d) =
∑

p(w|z)p(z|d), (1)

where w denotes codewords, d denotes images, and a latent
topic z is the mid-level information across images under dif-
ferent object categories d using the quantized BoW informa-
tion w.

2.2. Zero-shot learning via signature topics

In this section, we discuss given the learnt pLSA model, how
to relate unseen classes using the seen classes’ information by
Coarse Class (CC) and Fine Class (FC) relationship, respec-
tively. Following that, we shows in detail how zero-shot learn-
ing is performed using the novel signature topic and coarse-
to-fine relationship.

2.2.1. Coarse Class and Fine Class - their relationship

In zero-shot learning, we have object classes that is ‘seen’,
that is availability of training samples for the classes. Also,
we have unseen classes where there are no training images

available during the training phase. Our task here is how to
define unseen classes’ model using the seen classes’ informa-
tion a.k.a. zero-shot learning. In particular, we utilise pLSA
to relate the seen and unseen class. Adopting [12], we define

Definition 1 Fine Class (FC) as a specific object class that
need to be classified and is a subset to one of the Coarse Class.

Definition 2 Coarse Class (CC) as a large concept class that
shares a conceptual similarity, either physical or biological,
within its own FC.

Both the FC and CC can be expressed as to Eq 2:

∀cFC∈cCC
cx ∼ cy; cx, cy ∈ cFC (2)

where c denotes class c ∈ C and ∼ relates both classes in
some manner. For example, CC can be electrical devices and
its associated FC are refrigerator, washing machine, etc.

2.2.2. Signature topic mapping

Employing the learnt pLSA model, firstly, we denote a seen
class as s ∈ S and an unseen class as u ∈ U , where S,U ∈ C.
Secondly, we introduce a novel mapping algorithm that uses
m number of topic sets from all the topic sets, M to represent
each seen class s (m � M ). We denote this as the signature
topic set STs:

STs = argmax
STm

∑
m∈M

p(STm|d), (3)

where size of M is 2n and n is number of latent topics. Taking
n = 3 as example, the size of M is 8 ([0 0 1], [0 1 0], [1 0 0],
[0 1 1], [1 0 0], [1 0 1], [1 1 0], [1 1 1]), where 1 indicates the
signature topic(s) and vice versa.

Therefore, for each unseen class u, we can employ a pair
of STs to predict the STu by:

STSx
∼ STu ∼ STSy

, (4)

where class Sx and Sy are random seen classes picked from
the same CC. STu is inferred as the union of the STs pairs
to achieve zero-shot learning. Ideally, if STSx

is [0 0 1] and
STSy

is [1 0 0], then STu is [1 0 1].
Finally, class c′ can be predicted by evaluating p(STc′ |dt):

p(c′|dt) =
p(STc′ |dt)∑

c∈C p(STSTc
|dt)

. (5)

where t are the test images.

3. EXPERIMENTS

In the experiments, we use 3 different public datasets: Pub-
Fig [2], Cifar-100 [12], and Caltech-256 [13] to evaluate the
effectiveness of our proposed approach. In order to evaluate
p(c′|dt), 1-vs-all classification is performed. Unless speci-
fied, all dataset features are extracted using PHOG with 3
pyramid levels, 180◦ angle and 20 bins. For the RF code-
book, it is learnt using 10 trees and 100 leafnodes.



Table 1: Performance evaluation (%) of the proposed method in different numbers of unseen class, n.

Unseen class, n 1 2 3 4 5
PubFig 58.89 ± 4.94 54.35 ± 4.80 54.99 ± 4.93 51.65 ± 3.80 51.30 ± 5.32
Cifar-100 56.84 ± 0.57 54.85 ± 0.75 - - -
Caltech-256 52.14 ± 6.04 51.49 ± 6.42 51.86 ± 5.74 52.13 ± 6.49 51.32 ± 6.20

Table 2: Comparison of the proposed method with classical
solutions in general inference task (no unseen class).

PubFig (%) Cifar-100 (%)
pLSA [1] [5] pLSA [14] [15]
67.83 62.00 37.00 58.13 53.70 54.80
± 0.91 ± 1 ± 1 ± 0.30 ± 1 ± 1

3.1. PubFig

Identical subset as in [1] is used where 8 random identities are
extracted with each class consists of 100 images. The PHOG
features are computed and RF codebook is built using 10 trees
with 100 leafnodes each. The PHOG features are quantized to
BoW space and build pLSA model using 11 topics, similar to
the number of attributes used in [1]. We also employ the class
relationship in [1] to find the unseen class topic set as Eq. 4.
However, the optimum nearest seen classes pair between the
unseen classes are chosen, and we assume the (�) relationship
in [1] is similar to our (∼) relationship.

Figure 2 shows our results and a comparison with relative
attributes [1] and binary attributes using DAP [5] in terms of
different number of unseen categories. From this, we notice
that our proposed method has a better performance consis-
tency (±7%) in compare to [1](±23%) and [5](±17%) re-
spectively. This shows the ability and effectiveness of the
proposed mapping algorithm to handle the intra-class vari-
ation problem as opposed to extensive attributes annotation
[1, 5].

3.2. Cifar-100

Cifar-100 [12] has 100 classes and each class contains 600
images with 32x32 resolutions. The 100 classes are further
grouped into 20 CC. Each CC has 5 FC, where n of them
is(are) unseen. The resultant from this, the total unseen class
is n∗20. We picked 30 training images randomly, and the rests
are testing images. In this dataset we use 10 topics, given the
intuition that 10 major semantic topics exist in the CC which
are ‘mammals’, ‘size’, ‘trees’, ‘vehicles’, ‘food’, ‘household’,
‘insects’, ‘reptiles’, ‘people’, and ‘flower’. Besides, due to
low resolution on these images, we only use 2 pyramid levels
and 50 codewords per tree.

Generally, when using least seen classes during the learn-
ing process, poorer accuracy is expected. However inter-
estingly in Table 1, the accuracy difference of our proposed
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Fig. 2: Accuracy vs. Number of unseen categories: Compar-
ison of the proposed method and [1, 5] in PubFig dataset.

method between n = 1 and n = 2 are only differed by a frac-
tion of ±2% even the difference number of unseen classes
between them is large (∼ 20 classes). This has shown the
robustness of the proposed method. Due to a limited number
of FC in each CC, we were only able to perform zero-shot
learning up to 2 unseen classes per CC, which is a total of 40
unseen FC. This is because we need at least two seen classes
to model an unseen class. If we have more than 3 unseen
classes in a CC, all the unseen classes will be modelled by
the same seen classes, and this is invalid as it will lead to all
the unseen class to have the same signature topic.

3.3. Caltech-256

Caltech-256 dataset [13] consists of 30607 images grouped
into 256 object classes and a background class. However,
it doesn’t have any CC concept. Therefore, we introduce a
way to group the classes to their respective CC that follows
Cifar-100 CC except some specific classes that need new CC
concept. In Table 3, we show the distribution of selected
Caltech-256 classes with 5 existing CC as in Cifar-100 and
the introduction of 4 new CC, with a total up to 9 CC. Only
158 of the Caltech-256 classes are grouped here because the
CC for those ungrouped object categories had very least FC
members. For this dataset, total unseen class is n ∗ 9.

From the results in Table 1, we observed the outcome is
more fluctuated in comparison to PubFig and Cifar-100 re-
sults. This may cause by the FC in some of the CC are seman-
tically related but with very low visual similarity, e.g. ‘com-
puter keyboard’, ‘computer monitor’ and ‘computer mouse’,



Table 3: Coarse Class (CC) concept for selected Caltech-256 dataset.

CC Caltech-256 class (FC)
household
electrical
devices

binoculars, boom-box, bread maker, calculator, CD, computer keyboard, computer monitor, computer
mouse, floppy-disk, head-phones, iPod, joystick, laptop, light bulb, megaphone, microwave, palm-pilot,
paper-shredder, PCI-card, photocopier, refrigerator, rotary-phone, toasters, treadmill, tripod, VCR, video-
projector, washing machine

household
furniture

bathtub, chandelier, chess-board, desk-globe, doorknob, ewer, flashlight, hammock, hot-tub, hourglass,
mailbox, mattress, menorah, picnic table

large man-
made outdoor
things

buddha, Eiffel-tower, golden-gate-bridge, light-house, minaret, pyramid, skyscraper, smokestack, teepee,
tower-Pisa, windmill

medium
mammals

dog, duck, elk, goat, goose, llama, minotaur, penguin, porcupine, raccoon, skunk, swan, unicorn, zebra,
greyhound

vehicles blimp, bulldozer, cannon, canoe, car-tire, covered-wagon, fighting-jet, fire-truck, helicopter, hot-air-ballon,
kayak, ketch, license-plate, motorbikes, mountain-bike, pram, school-bus, segway, self-propelled-lawn-
mower, snowmobile, speedboat, steering-wheel, touring-bike, tricycles, wheelbarrow, airplanes, car-side

household
daily items

beer-mug, chopsticks, coffee-mug, knife, spoon, stained-glass, paperclip, paper-shredder, coins, dice,
drinking-straw, dumb-bell, fire-extinguisher, frying-pan, ladder, pez-dispenser, playing-card, roulette-
wheel, screwdriver, Swiss-army-knife, tweezer, umbrella

sports baseball-bat, baseball-glove, baseball-hoop, billiards, bowling-ball, bowling-pin, boxing-glove, football-
helmet, Frisbee, golf-ball, skateboard, soccer-ball, tennis-ball, tennis-court, tennis-racket, yo-yo

wears cowboy-hat, diamond-ring, eyeglasses, football-helmet, necktie, sneaker, socks, top-hat, t-shirt, human-
wear, wielding-mask, yarmulke, tennis-shoes, saddle, stirrups

musical
instruments

electric-guitar, french-horn, grand-piano, guitar-pick, harmonica, harp, harpsichord, mandolin, sheet-music,
tambourine, tuning-fork, xylophone

which belong to CC = ‘household electrical devices’. Fol-
lowing that, error rates will increase when unseen classes are
‘computer mouse’, but related to ‘computer monitor’, and
‘computer keyboard’ respectively.

3.4. General inference task

Though the work is focused on zero-shot learning, we also
showed that the proposed method is capable to perform gen-
eral inference tasks. According to Table 2, our proposed
method outperforms the state-of-the-art methods [1, 5, 14, 15]
in PubFig and Cifar-100 datasets, respectively. This shows
the effectiveness and the robustness of the proposed method.
We didn’t perform inference on Caltech-256 dataset as there
are only 158 classes are extracted; it is not comparable and
fair to any state-of-the-art solutions.

3.5. Discussion

In the experiments, they are some cases where the predicted
STu is redundant. That is, if a lower number of topics is cho-
sen, the numbers of possible M will also be reduced. Hence,
there is chances that different unseen class u will have the
same STu. In order to solve this, all the experiments use good
number of topics to minimize the redundancy of STc.

Based on the experiments in Caltech-256, we aware that
classification accuracy is fluctuating due to the FC collection

quality under each CC. FC within CC is grouped based on
semantic relationship. However, these FC might be visually
dissimilar. This problem is likely to be solved by introducing
a middle-level class group to further assign the FC within
CC to some high-visual similarity group, e.g. we can further
group FC: ‘head-phones’, ‘rotary-phones’ and ‘megaphone’
in CC: ‘household electrical devices’ to be ‘phones’. When
we pick the random seen classes to model ‘megaphone’,
‘head-phones’ and ‘rotary-phones’ will have priority as the
related seen class.

4. CONCLUSION

This paper presents a novel approach of zero-shot learning,
where we learn unseen classes by modelling latent topics of
seen classes. This is in contrast to attributes approach that
requires extensive human intervention, and we achieve com-
parable performances. The main advantage of the topic model
is it allows intra-class prediction while attributes do not. La-
tent topic model automatically finds the most relevant topics
for images, and therefore, we can identify each object class
with a signature topic set ST . Our future work includes in-
troduce tighter relationship between the FC in the same CC.
With this, we can expect to achieve better performance in
zero-shot learning. We are also interested to look into rela-
tively large-scale dataset, with considerably good resolution.
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