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Abstract. Oral cancer is a major health issue among low- and middle-
income countries due to the late diagnosis. Automated algorithms and
tools have the potential to identify oral lesions for early detection of
oral cancer. In this paper, we aim to develop a novel deep learning
framework named D’OraCa to classify oral lesions using photographic
images. We are the first to develop a mouth landmark detection model
for the oral images and incorporate it into the oral lesion classification
model as a guidance to improve the classification accuracy. We evaluate
the performance of five different deep convolutional neural networks and
MobileNetV2 was chosen as the feature extractor for our proposed mouth
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landmark detection model. Quantitative and qualitative results demon-
strate the effectiveness of the mouth landmark detection model in guid-
ing the classification model to classify the oral lesions into four different
referral decision classes. We train our proposed mouth landmark model
on a combination of five datasets, containing 221,565 images. Then, we
train and evaluate our proposed classification model with mouth land-
mark guidance using 2,455 oral images. The results are consistent with
clinicians and the F1 score of the classification model is improved to
61.68%.

Keywords: Deep learning · Classification · Oral lesions · Mouth
landmark

1 Introduction

Oral cancer is one of the most common malignant tumor with high risk in low-
and middle-income countries (LMICs). There were an estimated 354,864 new
cases of cancers of the oral cavity, and 177,384 deaths in 2018 [7]. Smoking,
alcohol use and chewing of betel quid are the major risk factors for oral cancer
[1,26,29,33]. Many people are unaware that cancer could arise in the oral cavity
because of poor awareness of cancer-related symptoms. The early detection of
oral cancer is essential for better survival. Oral cancer is often preceded by
lesions termed as oral potentially malignant disorders (OPMDs), which are easily
visible for early detection without the need of special instruments. Based on
the appearances of oral lesions, specialists can make decisions on next course
of action according to their clinical experience [40]. However, due to the limited
effort towards screening and early detection, most patients affected by oral cancer
are diagnosed at advanced-stages [29].

Artificial Intelligence (AI) has been adopted in various industries to improve
the efficiency as well as to reduce the cost. Recent advances in deep learning tech-
niques have improved the performance of AI models in various domains that can
achieve or even outperform human level performance in cognition related tasks
[28]. Deep learning has also gained popularity and made remarkable progress
in the medical field to perform clinical diagnosis such as classifying skin lesions
[12,34], detecting pneumonia from chest X-rays [4,31] and enhancing visualiza-
tion of pathologies [15,23,25]. The development of deep learning techniques has
yielded impressive results in the medical field, but it is not meant to replace
humans, rather to assist humans and improve the efficiency.

For the past few years, early detection of oral cancer using deep learning tech-
niques has been a significant research area. Specifically, deep learning algorithms
are trained to capture fine-grained features of oral lesions and identify the specific
visual patterns of oral cancer. The previous works are mainly based on different
types of images such as multidimensional hyperspectral images [19], computed
tomography (CT) images [44], microscopic images [3,13,22], autofluorescence
images [37,39] and photographic images [14,41,42]. In this work, we propose
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a novel deep learning framework to classify the oral lesions from photographic
images into four different referral decision classes. Our proposed framework con-
sists of a mouth landmark detection module and oral lesion classification module
(Fig. 1). We design a new mouth landmark model to detect the location of the
mouth and use it as an explicit feature to guide the classification model.

The contributions are twofold: i) To the best of our knowledge, we are the
first to develop mouth landmark detection model that can detect the location
of the mouth from the oral images. Existing facial landmark detection models
do not work on oral images which do not consist of the entire human face. ii)
We propose a novel oral lesion classification framework, namely D’OraCa with
mouth landmark guidance for early detection of oral cancer. Experiments show
that the performance of the classification model improves significantly with the
mouth landmark guidance (Tables 4 and 5).

Fig. 1. Proposed oral lesion classification model with mouth landmark guidance that
takes an oral images as input, detects the location of the mouth, and outputs the referral
decision. On this example, proposed model correctly detects the mouth landmark and
classifies the oral lesion as ‘Refer for other reasons’.

2 Related Work

This section reviews the most relevant works related to the current research on
oral lesion classification models and mouth landmark detection models.

2.1 Mouth Landmark Detection

There are no existing works on mouth landmark detection for oral images. How-
ever, there are a few studies on mouth features detection for front views of
closed or slightly open mouth images. In [5], the authors focused on finding out
the mouth candidates by segmenting the image based on skin-color. The input
image must be a human face taken from the front view. It is not applicable
for mouth images. Pantic et al. [30] proposed a mouth detection method with
rule-based reasoning to extract the four mouth feature points based on template
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Fig. 2.Overview of the proposed architecture. Our network consists of two components.
(Top) The first is the mouth landmark detection module, which detects the location of
the mouth through a deep CNN and generates the mouth landmark feature. (Bottom)
The second is the classification module. This module feeds oral images into ResNet-101
to obtain the fixed-size feature vector and fuses the two features to generate the final
classification results.

matching. The proposed method depends on illumination conditions, assumes
that the mouth-color pixel is red and segments based on it. The author men-
tioned that the proposed method can deal only with limited out-of-plane head
rotations and expressionless mouth appearance. However, the oral images are
usually taken at a different angle and the mouth is opened slightly larger to
capture the oral cavity as shown in Fig. 4.

We also refer to facial landmark detection model as our related work due
to the similar research area. The goal of facial landmark detection is to detect
key points in human faces such as the eye corner, eyebrows, nose, chin and
mouth. It is quite similar to our mouth landmark detection where the input
image is only mouth area instead of the entire human face. Before the advent
of deep learning, conventional facial landmark detection were mainly based on
the template fitting method [2,45,48] and the cascaded regression-based method
[8,20,38,43]. The template fitting method builds the face shape templates to fit
the input images and estimates the landmark locations. While, the cascaded
regression-based method estimates the landmark locations using image features
with an initial guess and refines them using a cascade of machine learning models.

With the fast development of deep learning techniques in computer vision,
deep learning based methods [9,11,21,27,46,47] have significantly boosted and
outperformed both the template fitting method and cascaded regression-based
method, creating a new state-of-the-art in facial landmark detection task. Most
of them leverage deep convolutional neural networks (CNN) to learn facial fea-
tures and predict the facial landmark in an end-to-end fashion. For instance, Yu
et al. [46] proposed a deep deformation network and Lv et al. [27] presented a
deep regression architecture with two-stage re-initialization for facial landmark
detection. In [11], a style-aggregated network has been proposed to deal with the
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large intrinsic variance of image styles for facial landmark detection. Chandran
et al. [9] proposed an attention-driven architecture for facial landmark detection
on very high resolution facial images without downsampling. Motivated by the
development of facial landmark detection task, we develop a mouth landmark
detection model based on deep CNN to detect the mouth key points in oral
images.

2.2 Oral Lesion Classification

The previous works in oral lesion classification can be categorized based on the
types of input images. We found that previous research was mainly limited to
highly standardized images such as multidimensional hyperspectral images, CT
images, microscopic images and autofluorescence images. Jeyaraj et al. [19] pro-
posed a partitioned CNN algorithm to classify multidimensional hyperspectral
images of the oral cavity into normal, benign or cancerous region. Xu et al. [44]
developed a three-dimensional CNN algorithm for the early diagnosis of oral
cancer. The proposed algorithm performed binary classification on CT images
of oral cavity to profile oral tumors as benign or malignant. In [22], the authors
showed that the fuzzy classifier were able to classify normal and oral cancer
stages using the combination of texture based features from the histopathologi-
cal images. Similar work has been done in [13] by using CNN to identify seven
tissue classes from the histopathological images. Aubreville et al. [3] proposed
a novel CNN-based approach for oral squamous cell carcinoma (OSCC) diagno-
sis on confocal laser endomicroscopy (CLE) images. Song et al. [37] and Uthoff
et al. [39] presented a CNN binary classification method for oral cancer based
on autofluorescence and white light images.

There are a few existing works involving the use of photographic images
which is the most relevant to our work. The oral images can be captured directly
using a smartphone and did not require specialized instruments. Fu et al. [14]
developed a cascaded CNN model to perform binary classification on early detec-
tion of OSCC from photographic images. While, Welikala et al. [41] focused on
detection and classification of oral lesions from photographic images using the
Faster R-CNN [32] and ResNet-101 [16] network. Three separate models were
built to explore different binary and multi-class image classification tasks. The
authors further extended the work in [42] to compare the performance of five
common CNN architectures on the binary classification of ‘referral’ vs. ‘non-
referral’. Transfer learning was applied on the CNN architectures pretrained on
the ImageNet dataset [10] and fine-tuning to the smaller oral image dataset.

3 Methodology

In this section, we present our novel architecture for classification of oral lesions
with mouth landmark guidance as shown in Fig. 2. In our proposed architecture,
we integrate the mouth landmark detection model with the deep learning-based
image classification model to classify oral lesions for the early detection of oral
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cancer. Firstly, the mouth landmark detection model is employed to detect the
location of mouth in an image. This explicit information is to tell where should
the classification model focus on to look for the cancerous signs. The mouth
landmark detection model will be further discussed in Sect. 3.1, then followed
by the deep learning-based image classification model to predict the referral
decision classes in Sect. 3.2. We compare the performance of the classification
model with or without mouth landmark guidance. The objective is to prove and
experiment on the hypothesis of the mouth landmark features might help the
image classification model to focus on the mouth area in the image to increase
the accuracy of the model.

3.1 Mouth Landmark Detection Module

Fig. 3. Architecture of the proposed Mouth Landmark Detection Model: The oral
image is fed into MobileNetV2, followed by two fully-connected layers to output 12
landmarks (green dots), indicating the location of mouth. Best viewed in color. (Color
figure online)

The proposed mouth landmark detection module leverages the benefit of deep
CNN to extract the image features and predict the mouth landmarks. This
module is illustrated in Fig. 3. Technically, the input oral image I is fed into
the deep CNN to extract the features. The features are then encoded by two
fully-connected layers and a softmax layer to output the N number of mouth
landmarks. The formula can be represented as:

p (M | I) = softmax(F1(fCNN (I))) (1)

where fCNN represents the deep CNN encoder, F1 denotes the two fully-
connected layers, I is the input oral image and M = {mi}Zi=1 with mi ∈ R :
0 ≤ mi ≤ 1 is the output mouth landmark key points. The mouth landmark
detection model is trained to minimize the mean squared error (MSE) loss Lmse

as:

Lmse (Ym,M) =
1
Z

Z∑

i

(ym,i − mi)2 (2)

where Ym represents the ground-truth landmark and Z = 2×N is the number of
mouth landmark key points, each landmark consists of two points to represent
x-coordinate and y-coordinate.
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3.2 Oral Lesion Classification Module

The classification module feeds the oral images into ResNet-101 to obtain the
fixed-size feature vector. This feature vector is fused with the mouth landmark
key points and classifies the image into the four different referral decision classes.
The referral decision classes are “No referral needed”, “Refer - cancer/high-risk
OPMD”, “Refer - low-risk OPMD” and “Refer for other reasons”. The architec-
ture of our network is summarized in Fig. 2. For the classification module, we
have chosen ResNet-101 as the feature extraction network due to its superior-
ity in the image classification tasks. ResNet-101 is a CNN with a much deeper
layers, which consists of 101 layers with residual blocks that having shortcut
connections to solve the vanishing gradient problem in training.

In order to guide the classification model with the proposed mouth landmark
detection module, we encode the mouth landmark key points M using a fully-
connected layer into a feature vector fm with the size of 1 × 256. The ResNet-101
is then used to encode the oral image into a feature vector fo with the size of 1
× 1024. Both feature vectors fm and fo are concatenated and processed through
the last fully-connected layer followed by a softmax layer to output the final
prediction. The formula can be represented as:

p (R | I) = softmax(F2(fm ⊕ fo)) (3)

where ⊕ represents concatenation, F2 denotes the last fully-connected layer and
R is the predicted referral decision. The classification model is trained to mini-
mize the cross-entropy loss Lce as:

Lce (Yr, R) = −
C∑

i

yr,ilog(ri) (4)

where Yr represents the ground-truth referral decision and C is the number of
referral decision classes.

4 Experiments

4.1 Dataset and Metrics

There is no publicly available mouth landmark dataset for us to train our pro-
posed mouth landmark detection model. Therefore, we make use of the existing
facial landmark datasets, augmented the data to form our mouth landmark
dataset for training and evaluation. We combine the face images from HELEN
[24], 300W [35], AFW [48], IBUG [36], LFPW [6] and 300-VW [36] datasets to
form a total of 221,565 face images. Each face images consists of 68 landmarks to
indicate the location of eye corner, eyebrows, nose, chin and mouth. We prepro-
cess the face images to extract only the mouth region with 20 mouth landmarks.
We separate 180,000 images for training set, 20,000 images for testing set and
21,565 images for validation set.
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To train and evaluate our proposed oral lesion classification model, we built
a well-annotated oral image dataset which consists of 2,455 images collected
from clinical experts from across the world. Each image was annotated by 1 to 7
expert clinicians to produce the referral decision, type of lesions, bounding box
of the lesions, site, outline, etc. Each image was also linked to its metadata such
as gender, age, smoking, alcohol use and chewing of betel quid. The annotations
from multiple expert clinicians were processed with a novel strategy proposed by
[41] to form a single set of annotations for the classification task. In this work, we
only used the referral decision label as our classification objective. The dataset
was split into 1,963 images for training set, 248 images for testing set and 244
images for validation set. The number of images for each referral decision class
was shown in Table 1.

Table 1. Number of images according to the referral decision class

Referral decision Training Validation Testing Total

No referral needed 394 49 50 493

Refer - cancer/high-risk OPMD 509 63 64 636

Refer - low-risk OPMD 548 68 69 685

Refer for other reasons 512 64 65 641

Total 1963 244 248 2455

4.2 Mouth Landmark Detection Result

Table 2. Comparison between different deep CNNs on the mouth landmark testing
set. The bold numbers represent the best result.

Methods Mean square error (MSE)

(20 landmarks) (12 landmarks)

Custom network 0.04567 0.04716

MobileNetV2 0.04454 0.04239

MobileNetV3 0.04658 0.05294

ResNet-50 0.04415 0.04948

ResNet-101 0.04543 0.04948

We evaluate the performance between different deep CNNs as the feature extrac-
tor for our proposed mouth landmark detection model. We compare the perfor-
mance of MobileNetV2 [18], MobileNetV3 [17], ResNet-50, ResNet-101 [16] and
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a custom network. The custom network is built using 5 convolutional layers,
2 fully-connected layers and we apply max pooling after convolutional layers.
These models were evaluated using MSE in 12 and 20 landmarks to measure
the average squared difference between the estimated landmark values and the
actual landmark value.

As shown in Table 2, ResNet-50 and MobileNetV2 achieved the lowest MSE
in 20 landmarks and 12 landmarks detection task respectively. MobileNetV2
(12 landmarks) was chosen as the deep CNN for our proposed mouth landmark
model and integrated into the classification model. This was due to the lowest
MSE achieved by MobileNetV2 and its lightweight model compared to the other
methods. As the proposed mouth landmark detection model will be built into a
mobile app in the future, a smaller size and faster inference time are required. As
shown in Table 3, MobileNetV2 has the lowest number of parameters, smallest
model size and fastest inference time.

Table 3. Comparison between different deep CNNs on the model size, number of
parameters and inference time.

Custom network MobileNetV2 ResNet-50

No of parameters 7 million 2 million 23 million

Model size 30 MB 9 MB 90 MB

Inference time/Image 0.009 s 0.007 s 0.1 s

The qualitative results are shown in Fig. 4. Our proposed mouth landmark
detection model can generate the correct mouth landmark in different angles of
the mouth for oral images. For example, the top right image in Fig. 4 is showing
the mouth captured from the right angle and the proposed model still can detect
the correct mouth landmark. However, there are also some failure cases produced
by our proposed model as shown in Fig. 5.

4.3 Oral Lesion Classification Result

Due to the lower number of oral images for the classification task, we imple-
mented data augmentation on the dataset to generate more training samples
through image pre-processing such as horizontal flip, horizontal shift and zoom.
Note that data augmentation was not carried out on the validation and test-
ing set. We used ResNet-101 pretrained on the ImageNet dataset as our deep
learning model and performed transfer learning to our dataset, which as a result
significantly reduced the training time and avoided overfitting the model.

To show the efficacy of our proposed mouth landmark guidance in the oral
lesion classification model, we presented the quantitative result of the classifica-
tion model with/without mouth landmark guidance on the test set in Table 4 and
5. Table 4 shows the result of the oral lesion classification model without mouth
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Fig. 4. Qualitative results of the proposed mouth landmark detection model on a few
images. It is noticed that the model is able to generate the correct mouth landmarks
(green dots). Best view in color. (Color figure online)

Fig. 5. Incorrect mouth landmarks (green dots) generated by the proposed mouth
landmark detection model. Best view in color (Color figure online)

Table 4. Oral lesion classification result without mouth landmark guidance, where
TP, FP, TN and FN are true positive, false positive, true negative and false negative,
respectively.

Class TP FP TN FN Precision Recall F1 score

No referral needed 20 13 185 30 60.61% 40.00% 48.19%

Refer - cancer/high-risk OPMD 49 37 147 15 56.98% 76.56% 65.33%

Refer - low-risk OPMD 34 27 152 35 55.74% 49.28% 52.31%

Refer for other reasons 40 28 155 25 58.82% 61.54% 60.15%

Macro-average 58.04% 56.84% 56.50%
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Fig. 6. Result of oral lesion classification model with mouth landmark guidance. (a),
(b) and (c) are correctly classified as ‘Refer - cancer/high-risk OPMD’. (d) and (e) are
correctly classified as ‘Refer - low-risk OPMD’. (f) and (g) are correctly classified as
‘Refer for other reasons’. (h) and (i) are correctly classified as ‘No referral needed’.

Table 5. Oral lesion classification result with mouth landmark guidance.

Class TP FP TN FN Precision Recall F1 score

No referral needed 24 18 180 26 57.14% 48.00% 52.17%

Refer - cancer/high-risk OPMD 46 25 159 18 64.78% 71.88% 68.14%

Refer - low-risk OPMD 43 25 154 26 63.24% 62.32% 62.77%

Refer for other reasons 42 25 157 23 62.69% 64.62% 63.64%

Macro-average 61.96% 61.70% 61.68%

landmark guidance. The model can achieve a precision of 58.04%, a recall of
56.84% and a F1 score of 56.50%. Table 5 shows the result of the oral lesion
classification model with mouth landmark guidance. The model can achieve a
precision of 61.96%, a recall of 61.70% and a F1 score of 61.68%. With mouth
landmark guidance, the F1 score of each referral decision classes were improved
significantly, especially the F1 score of “Refer - low-risk OPMD” class increased
from 52.31 to 62.77 with a 20% improvement. The qualitative results from the
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oral lesion classification model with mouth landmark guidance are provided in
Fig. 6. The results are consistent with clinicians.

5 Conclusion

We presented a novel deep learning framework to classify the oral lesions from
photographic images into four different referral decision classes. We also devel-
oped a mouth landmark detection model that can detect the location of the
mouth from the oral images. We showed that the oral classification accuracy
improved significantly with the guidance of the mouth landmark detection
model. The model was trained and validated on a well-annotated oral image
dataset containing 2,455 images. In conclusion, the initial results show the effec-
tiveness of deep learning in early detection of oral cancer and we believe our
proposed method can greatly contribute to the medical field. In future, we plan
to improve the model by building a larger dataset with well-annotated labels
and make use of the risk factors information to train the model.
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