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Fuzzy Qualitative Human Motion Analysis
Chee Seng Chan, Student Member, IEEE, and Honghai Liu, Senior Member, IEEE

Abstract—This paper proposes a fuzzy qualitative approach to
vision-based human motion analysis with an emphasis on human
motion recognition. It achieves feasible computational cost for hu-
man motion recognition by combining fuzzy qualitative robot kine-
matics with human motion tracking and recognition algorithms.
First, a data-quantization process is proposed to relax the com-
putational complexity suffered from visual tracking algorithms.
Second, a novel human motion representation, i.e., qualitative nor-
malized template, is developed in terms of the fuzzy qualitative
robot kinematics framework to effectively represent human mo-
tion. The human skeleton is modeled as a complex kinematic chain,
and its motion is represented by a series of such models in terms
of time. Finally, experiment results are provided to demonstrate
the effectiveness of the proposed method. An empirical compar-
ison with conventional hidden Markov model (HMM) and fuzzy
HMM (FHMM) shows that the proposed approach consistently
outperforms both HMMs in human motion recognition.

Index Terms—Fuzzy qualitative reasoning, human motion anal-
ysis, image processing, intelligent robotics.

I. INTRODUCTION

MOTION understanding is the ability to analyze human
motion patterns, and, further, to produce high-level in-

terpretations of these patterns. Human motion in-depth under-
standing plays a crucial role in a diverse spectrum of applica-
tions from surveillance-based suspicious-behavior recognition
to monitoring of daily health care for elderly people. Funda-
mentally, human motion analysis systems consist of description
and recognition of human motion: first, extracting relevant in-
formation through visual tracking that involves the detection of
regions of interest in image sequences that are changing with
respect to time and/or finding frame to frame correspondence
of each region so that features of each region can reliably be
extracted and second modeling this information as an abstrac-
tion of sensory data that should reflect a real-world situation.
Finally, a recognition step aiming at determining the maximum
similarity between an unobserved test sequence and prelearned
motion models. Nevertheless, developing these algorithms is an
immense challenge as it is a problem that combines the un-
certainty associated with computational vision and the added
whimsy of human behavior. For instance, the methodology of
implementing such a system has been the focus of research in
the past two decades, and many works have been conducted
and published with a promising classification rate. Surprisingly,
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such a promising system has yet to be employed in practice. The
underlying issue is that these existing methodologies are not
computationally feasible, i.e., the complexity of such systems
in terms of the processing time is too expensive to implement
into real systems, mainly due to the tracking precision.

In visual tracking, particle filters [10] and its variants [11],
[35] have been well developed in human-motion tracking re-
search over the past decades, but its computational cost keeps
them from practical applications. It can be seen that a standard
particle filter has a computational complexity ofO(2N) and time
complexity of N

∑m
k=1 τk , where N is the number of particles,

and τk is the cost of calculation p(zk |x). This is a major draw-
back as practical human motion analysis systems are required to
run in real-time, or near real-time frame rates, whereas methods
that do not use such approaches usually rely on the accuracy
of motion sensors but seldom provide a measure of confidence
of the results that are crucial to discriminate similar events in
a noisy environment. On the other hand, representation of hu-
man motion is a very important and sometimes difficult aspect
of an intelligent system. The representation is an abstraction of
sensory data that should reflect a real-world situation and be
compact and reliable. Probabilistic graph models have been the
dominant methods in the field of human motion analysis sys-
tems [7]. Despite the fact that all these approaches have demon-
strated success in modeling and recognizing complex activities,
there is, however, a tendency to use the parameterization as a
“black box,” i.e., these approaches highly depend on probabil-
ities and intensive training to recognize all the activities. Thus,
one needs to have a large number of training sequences with
intensive training in order for each activity to be recognized
correctly. This requires increasingly expensive computational
power in that the complexities of these solutions in terms of
processing time are proportional to the size of the training data.

Template matching is one of the earliest human motion anal-
ysis methods. Bobick and Davis [3] proposed a view-based
approach to the representation and recognition of action using
temporal templates. They made use of the binary motion en-
ergy image (MEI) and motion history image (MHI) to interpret
human movement in an image sequence. First, motion images
in a sequence were extracted by differencing, and these mo-
tion images were accumulated in time to form MEI. Then, the
MEI was enhanced into MHI that was a scalar-valued image.
Taken together, the MEI and MHI were considered to be a two-
component version of a temporal template, i.e., a vector-valued
image, in which each component of each pixel was some func-
tion of the motion at that pixel position. Finally, by representing
the templates by its seven Hu-moments, a Mahalanobis distance
was employed to classify the action of the subject by comparing
it with the Hu-moments of prerecorded actions. Bradski and
Davis [5] further contributed to the idea of MHI by proposing
timed MHI (tMHI) for motion segmentation. tMHI allows for
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determination of the normal optical flow. Motion is segmented
relative to object boundaries and the motion orientation. Hu-
moments are applied to the binary silhouette to recognize the
pose. However, one of the main problems of template matching
approaches is that the recognition rate of objects based on 2-D
image features is low, due to the nonlinear distortion during
perspective projection and the image variations with the view-
point’s movement. These algorithms are generally unable to re-
cover the 3-D pose of objects. Moreover, the stability of dealing
effectively with occlusion, overlapping, and interference of un-
related structures is generally poor. Alternatively, model-based
approaches have been adopted [8], [9], [14], [15] in which a hu-
man body model is constructed with prior knowledge. Wang et
al. [34] presented an approach where contours are extracted and
a mean contour is computed to represent the static contour in-
formation. Dynamic information is extracted by using a detailed
model composed of 14 rigid body parts, each one represented
by a truncated cone. Particle filtering [10] is used to compute the
likelihood of a pose given an input image. However, there is a
tradeoff between tracking precision against computational cost
where a number of systems are based on incremental updates or
searching around a predicted value [10], [31], [32].

Recently, hidden Markov models (HMMs), which are a fam-
ily of popular parametric methods, have been formulated in
human motion analysis systems. Common approaches consist
of extracting low-level features by local spatiotemporal filtering
on images and using the HMM on the collection of sequences
of points to achieve activity recognition and classification tasks.
The HMM considers this correlation between adjacent time in-
stances by formulating a Markov process and assumes that the
observation sequence is statistically determined by a hidden
process that is composed of a fixed number of hidden states.
For instance, Lv and Nevatia [21] decomposed the large joint
space into a set feature space where each feature corresponds
to a single joint or combination of related joints. An AdaBoost
scheme was employed to detect and recognize each feature in
the feature space, followed by an HMM system to recognize
each action class based on the detected features. Leo et al. [16]
attempted to classify actions at an archaeological site. A sys-
tem that uses binary patches and an unsupervised clustering
algorithm to detect human body postures was proposed. A dis-
crete HMM is used to classify the sequences of poses into a
set of four different actions. A mixed state statistical model for
the representation of motion had been proposed in [6], i.e., the
work decomposes a human behavior into multiple abstractions
and represents the high-level abstraction by HMM built from
phases of simple movements. Estimation and recognition of
human behavior is performed with expectation–maximization
approaches using particle filters [10] or structured variation in-
ference techniques [26]. While all these solutions have demon-
strated success in classifying complex activities, HMMs suffer
from few drawbacks. First of all, an HMM relies on stochastic
learning; they require extensive training. Therefore, one needs
to have a large number of training sequences for each activity to
be recognized correctly. This is not feasible as practical human-
motion analysis systems must often work in real-time or near
real-time frame rates. Second, for each activity to be recognized,

a separate HMM needs to be built. Hence, a solution that can
flexibly handle the tradeoff between human motion precision
and its computation efficiency are the next important step in a
human-motion analysis system.

In this paper, we propose a fuzzy qualitative method to study
human-motion analysis in order to reduce the computational
complexity encountered by existing solutions, enabling such
systems to be used in practical situations. First of all, we pro-
pose a solution to handle the tradeoff between computational
efficiency and motion description precision in the visual track-
ing algorithm by applying a data-quantization process. Dur-
ing this process, we consider the rigid motion of each human
body joint in a fuzzy qualitative description. Second, a novel
human-motion representation, known as qualitative normalized
template (QNT), is developed in terms of the fuzzy qualitative
robot kinematics framework [19] to effectively represent hu-
man motion. The QNT is a template-based method instead of
a statistical learning method; hence, large training datasets are
not required. Instead, strong discriminative features can be de-
rived from just a couple of example activities. Finally, empirical
results show that our proposed solution outperforms existing
solutions in human motion recognition by flexibly handling the
tradeoff between human-motion precision and its computational
efficiency.

The remainder of the paper is structured as follows. Section II
derives the fuzzy qualitative human motion analysis, in partic-
ular, how both the data quantization and fuzzy qualitative robot
kinematics framework are employed to study human motion in
video sequences. Section III presents the experimental results
and an empirical comparison with the HMM and FHMM in
human-motion classification. Section IV concludes the paper
with discussions and future works.

II. FUZZY QUALITATIVE HUMAN-MOTION ANALYSIS

This section presents fuzzy qualitative description for human-
motion analysis in video sequences. The culmination of algo-
rithms is represented by a distributed video collection and pro-
cessing system in which the basic tasks of human body mod-
eling, human-motion tracking, representation, and recognition
are performed in support of a single, underlying task, which is
human-motion analysis.

A. Human Body Modeling

In principle, one must perceive a human motion before mod-
eling and interpreting it, which means that an appearance model
is needed. In this paper, we simplify a human body into a
collection of hierarchical structure skeleton composed of seg-
ments and limbs linked together in a kinematic chain. The
model parameters are given by φt = [(φpos

t )T , (φvel
t )T ]T =

[tTt , αT
t , θT

t , t̂Tt , α̂T
t , θ̂T

t ]T , where tt and αt represent the trans-
lation and rotation that map the body into the world coordinates
system, and θt represents the relative angles between all pairs
of connected limbs. Parameters t̂Tt , α̂T

t , and θ̂T
t represent the

corresponding velocities. In addition, an event or action is de-
fined as the temporal movement of a human body segment in
a short time period and is represented by a state representation
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Fig. 1. Sample human motions used from the database provided by [2]
and [29]. Trajectories from six landmarks (shoulder, elbow, wrist, hip, knee,
and ankle) on the human body are tracked over time using the condensation
algorithm.

in a normalized fuzzy qualitative unit circle. Further, an activ-
ity is defined as a combination-ordered sequence of the entire
participating body segment’s movement over time, which is
restricted by the motion constraints of the human body. For in-
stance, the sequences of events for a walking activity include
segment events for the foot, lower leg, and thigh and joint events
for the ankle, knee, and hip. All these sequences occur in the
leg that is moving forward, while the leg that supports the body
will show no such events, and the walking activity is defined as
a combination of these sequences of events.

B. Human-Motion Tracking

The condensation algorithm [10] has been employed to es-
timate the posterior probability distribution over human pose,
given a sequence of observation measurement. It is assumed that
all elements φi,t ∈ φt are independent, and all parameters were
initialized manually with a Gaussian distribution at time t = 0.
In order to restrict the set of admissible motions and reduce the
ambiguities in the estimation, each joint is allowed only for one
single DOF, which is a rotation around its axis. This constraint
is justified by the fact that typically, the motion of the limbs can
be approximated as planar around an axis perpendicular to the
direction of the motion. Fig. 1 shows examples of sets of trajec-
tories from different limb motions in the case of real videos. The
condensation algorithm is one of dominant tracking algorithms;
for detailed human-motion tracking algorithms, see [1], [22],
and [33].

The condensation algorithm discussed herein has the advan-
tage that the particle representation can represent distributions
that are difficult to model analytically. The performances of such
algorithms have not, however, been fully evaluated under cir-
cumstances specifically to real-time vision systems, where there
exists a certain tradeoff between motion description precision
and computational efficiency. For instance, the condensation
algorithm is an approximation technique by representing the
posterior density as a set of samples of the state space with as-

sociated likelihood weights ωi
t , i ∈ {1, . . . , N}. The sample set

approximation of the current posterior density p(Xt |O1:t) can
be obtained via

p(Xt |O1:t) ≈
N∑

i=1

ωi
tδ(Xt − xi

t) (1)

where Xt denotes the multivariant state at time t, O1:t denotes
the sequence of observation measurements within the time range
[1, t], and δ(Xt − xi

t) denotes the Dirac delta function; the prior
is approximated as

p(Xt |O1:t−1) ≈
N∑

i=1

ωi
t−1δ(Xt − xi

t−1). (2)

Weight ωi
t−1 is determined such that ωi

t−1 ∝ p(Ot−1 |Xi
t−1),∑N

i=1 ωi
t−1 = 1.

On examining (1) and (2), both equations are almost accurate
if one employs a sufficient large number of particles. In other
words, if the number of particles is infinite, i.e., N → ∞, the
right-hand sides of (1) and (2) become identical to the left-hand
sides. In reality, however, using an infinite number of particles is
not practical, especially for real-time processing. Nevertheless,
if relatively low numbers of particles are employed, the track-
ing system will fail and, hence, greatly affect human-motion
analysis systems during the representation and recognition
stages.

C. Data Quantization

Data quantization is a process adopted from Liu and Coghill
[20], in which the unit circle of the conventional trigonometry
has been fuzzified by the introduction of fuzzy qualitative quan-
tity spaces for its orientation and translation components; the
data quantization is a process that mapped quantitative informa-
tion qualitatively with respect to the configuration in the fuzzy
qualitative unit circle. The fuzzy qualitative quantity space is
a set of overlapped fuzzy numbers whose individual distance
among them is defined by a predefined metric. Besides, each
fuzzy number is a finite and convex discretization of the real
number line by default. Four tuple fuzzy numbers (i.e., [a, b, α,
β]) and its arithmetic are employed to describe the characteristic
of each state in the fuzzy qualitative unit circle. Such a repre-
sentation has been selected as it provides good compositionality
and high resolution [30].

In this paper, we employed the data-quantization process to
represent the predicted motion parameters φt qualitatively. The
advantage of the data-quantization process is that each of the
fuzzy qualitative quantity space in the fuzzy qualitative unit cir-
cle that is a finite and convex discretization of the real number
line will be able to model the tracking error when relatively low
numbers of particles are selected to perform the visual tracking
algorithm, i.e., we consider the motion of each joint as a col-
lection of time series describing the joint angles as they evolve
over time. This is achieved through the visual tracking algo-
rithm discussed in Section II-B. However, as shown in Fig. 2,
it is evident that about 1000 particles are needed in the conden-
sation algorithm, with approximately 60 min of training time



854 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 17, NO. 4, AUGUST 2009

Fig. 2. Number of particles versus training time. (a) Referring to the error rate result, it is evident that about 1000 of particles are needed in order to achieve the
required tracking precision. (b) Training time of the condensation algorithm employing 1000 particles requires about 60 min.

required in order to achieve the required tracking precision.
This is not feasible for a real-time vision-based human-motion
system.

The rigid motion of each joint is mapped into a fuzzy quali-
tative description through the data-quantization process so that
each joint movement is represented by the fuzzy qualitative ori-
entation states and fuzzy qualitative translation states in which
the quantitative dynamic characteristic of motion data resides
in the normalized fuzzy qualitative unit circle. A fuzzy quali-
tative unit circle is constructed using (3), shown below, where
the orientation and translation components in the conventional
unit circle are being replaced by fuzzy qualitative quantity
spaces

lim
s→so =12

Ct(s) = QS(qpl)

lim
r→co =16

Co(r) = QS(qpθ ) (3)

where s is the number of states resides in the x–y translation,
while r is the number of states resides on the orientation in the
fuzzy qualitative unit circle, i.e., s and r represent the number
of translation and orientation states employed in the quantity
spaces to represent the fuzzy qualitative unit circle, respec-
tively. As s → so and r → ro , the limits of Ct(s) and Co(r)
will approach to a set of so qualitative states for a translation
component and a set of ro qualitative states for an orientation
component. The range of s and r are application-dependent.
Empirically, we selected the translation s and orientation r as
s = 12 and r = 16 four-tuple fuzzy numbers, respectively, as
shown in Fig. 3.

The fuzzy qualitative quantity space Q of the fuzzy qualita-
tive unit circle consists of an orientation component Qa and a

translation component Qd , and it can be described as follows:

Qa = {QSa(θi)}, where i = 1, 2, . . . , m

Qd = {QSd(lj )}, where j = 1, 2, . . . , n (4)

where QSa(θi) denotes the state of an angle θi , QSd(lj ) denotes
the state of a distance lj , and m and n are the number of the
elements of the two components. The position measurement of
P (QSa(θi), QSd(lj )) determined by both the characteristics of
the fuzzy membership functions of QSa(θi) and QSd(lj ). The
geometric meaning of fuzzy qualitative trigonometry is demon-
strated in a proposed fuzzy qualitative unit circle, in which the
motion is described by an orientation component and a transla-
tion component. The level of resolution in the fuzzy qualitative
unit circle can be adjusted by setting the fuzzy number.

Further, with respect to the constructed fuzzy qualitative
unit circle, the predicted motion parameters φt obtained from
Section II-B are mapped into its corresponding fuzzy qualitative
states, as given in{

qpi
l |qpi

l ∈
[
0, li1 , li2 , . . . , li(ri −1) , liri

]
qpi

θ |qpi
θ ∈

[
0, qθi1 , qθi2 , . . . , qθi(si −1) , 2π

] (5)

where

qpi
j =

lij

si
, qθi

k =
2πk

ri

0 ≤ qpi
1 ≤ qpi

2 ≤ · · · ≤ qpi
(si −1) ≤ li

0 ≤ qθi
1 ≤ qθi

2 ≤ · · · ≤ qθi
(ri −1) ≤ 2π.

Each of these states is the corresponding region in which the
quantitative dynamic characteristic of motion data resides in the
fuzzy qualitative unit circle. Due to the fact that a motion com-
ponent comprises evenly distributed normalized numeric data,
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Fig. 3. Fuzzy qualitative unit circle with resolution s = 12 and r = 16, re-
spectively. (a) Description of the Cartesian translation and orientation in the
conventional unit circle are replaced by a quantity space. (b) Element of the
quantity space for every variable in the fuzzy qualitative unit circle is a finite
and convex discretization of the real number line.

fuzzy numbers have the same shapes by default. For simplicity,
we have b − a = κ0α and α = β, and the membership value of
the crossing point of adjacent fuzzy numbers is 0.5 by default.
Hence, a function for generating a quantity space including
n normalized qualitative states can be obtained shortly, where
[ai, bi , αi, βi ] denotes the ith fuzzy qualitative state QS(i)

QS(i) =




[0, κ0α, 0, β], i = 1

[(κ0 + 1)(i − 1)α, (κ0 + 1)iα − α, 0, β]
i = 2, . . . , n − 1

[1 − κ0α, 1, α, 0], i = n

(6)

TABLE I
QUANTIZATION RESULTS WITH s = 12 AND r = 16

where α = [1/(n(κ0 + 1) − 1)]κ0 is a threshold parameter to
define the shape of the fuzzy numbers, and κ0 and n are chosen
by applications or by a learning algorithm.

For each of the fuzzy qualitative state representation of the
motion parameters, we normalized them within the fuzzy quali-
tative unit circle [−1 1] using (7). Therefore, the qualitative and
quantitative representations are linked together, which paves
the way to connect numerical image sequences with symbolic
natural language description


QS(qpl) = qpl |qpl ∈

[
ql1
ql

,
ql2
ql

, . . . ,
qls−1

ql
, 1

]

QS(qpθ ) = qpθ |qpθ ∈
[
qθ1

2π
,
qθ2

2π
, . . . ,

qθr−1

2π
, 1

] (7)

where x–y translation states qpl are normalized by the average
length of the human body segment ql, and the orientation states
qpθ are normalized to 2π. Hence, (5) can be rewritten as


qpi

l |qpi
l ∈

[
qpi

1∑n
i=1 li

,
qpi

2∑n
i=1 li

, . . . ,
qpi

(si −1)∑n
i=1 li

,
li∑n
i=1 li

]

qpi
θ |qpi

θ ∈
[

qθi
1

2π
,
qθi

2

2π
, . . . ,

qθi
(ri −1)

2π
, 1

]
.

(8)
The visual tracking parameters of each body joint are mapped

into the normalized fuzzy qualitative unit circle in order to
achieve the fuzzy qualitative description. It can be seen that
each motion parameter φt is represented by the corresponding
state region of a fuzzy qualitative state in the normalized unit
circle. For example, the predicted joint motion parameters of
J1 , J2 , and J3 at time instant t = 1 are represented by the same
fuzzy qualitative states after the data-quantization process, as
shown in Table I. In other words, if we have a sufficient num-
ber of particles to meet the resolution needed in the normalized
fuzzy qualitative unit circle, the data-quantization process will
be able to model the uncertainty under the constraints of the lim-
itation in visual tracking algorithms and to correctly preserve
the underlying motion description for motion representation and
recognition process.

In order to quantify the accuracy of the estimated motion
parameter φt before and after the proposed data-quantization
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TABLE II
COMPARISON OF THE ESTIMATED MOTION PARAMETERS WITH THE GROUND

TRUTH POSITIONS BEFORE AND AFTER DATA-QUANTIZATION PROCESS

process, Table II shows a comparison of the estimated motion
parameter φt obtained from the condensation algorithm with
N = 800 and N = 2000 to its ground truth position before
and after the proposed data-quantization process. It can be seen
that the accuracy of the estimated motion parameters φt after
the proposed data quantization process is typically much higher.
Also, it can be noted that the error rates of both the condensation
algorithms (N = 800 and N = 2000) are similar. This demon-
strates the effectiveness of the proposed data-quantization pro-
cess in terms of flexibly handling the tradeoff between human-
motion precision and its computational efficiency. This is an
essential step in order to move the human-motion analysis sys-
tems into practical use.

D. Human-Motion Representation

The data-quantization process is addressed in previous sec-
tions with a focus on representing the motion of individual joints
of the human body qualitatively in order to relax the computa-
tional complexity in visual tracking algorithms. It is evident that
human motion is a combination of ordered sequences of all the
independent movements [4]. In order to build a reliable human
motion template that reflects the real-world situation, the fuzzy
qualitative robot kinematics framework has been employed to
construct a novel motion template called a QNT. We model a
human skeleton structure as articulated rigid bodies with kine-
matic chains. It is assumed that the human motion is rigid so
that the priority is given to solely on the joint movements, and
the work will not be distracted by effects of muscle stretch and
reflex during a movement.

Based on fuzzy qualitative robot kinematics [19], the motion
of each body joint i is represented in terms of twist represen-
tation, as shown in (9), since it provides a simpler solution
and leads to a compact 3-D linear representation of a motion
model [25]

ξ = [ υ1 υ2 υ3 ω1 ω2 ω3 ] (9)

where ξ is a 3-D fuzzy qualitative unit vector that points in the
direction ranges of the rotation axis. The amount of rotation
is specific with a fuzzy qualitative angle state θ multiplied by
the twist ξθ, whereas the υ component determines the location
range of the rotation axis and the amount of translation along
this axis. For instance, in order to realize the motion performed
by each human body at time t, first, we define a base body
reference frame F0 that is attached to the base body and a spatial

Fig. 4. Proposed human model where each segment (i.e., limb) of a human is
represented by patches connected by joints. (a) 3-D human body. (b) 2-D human
body.

reference frame Fa , which is static and coincides with F0 at
time t. By considering a single kinematics chain of two human
body segments connected to the base frame, we parameterize
the orientation between these connected components in terms
of the angle of rotation around the axis of the object coordinate
frame θ. This rotation axis in the object frame can be represented
by a 3-D fuzzy qualitative unit vector ω1 along the axis and a
fuzzy qualitative point q1 on the axis. The twist representation
can be described as follows for revolute joint 1

ξ1 =
[
−ω1 × q1

ω1

]
. (10)

The transformation of fuzzy qualitative point q1 from Fa

coordinates to the base frame F0 can be obtained as

g(θ1) = g1g(0) = eξ1 θ1 g(0). (11)

For a kinematics chain of K bodies, its motion of the kth
body is represented by joint θk , and each joint is described by a
twist ξk . The forward kinematics gK (θ1 , θ2 , . . . , θk ) therefore
can be computed by the individual twist motion for each joint
eξk θk , and the transformation between the base frame g(0) and
Frame Fk can be obtained as

g(θ1 , θ2 , . . . , θk ) = eξ1 θ1 +ξ2 θ2 + ···+ξk θk g(0). (12)

As described, typical human motion is a combination of or-
dered sequences of all the independent movements performed
by each of the human body joint and can be considered as a
function with respect to time. Thus, for a continuous represen-
tation in time period T , where T ∈ (1, . . . , m), the compact
version of the transformation can be written as

gK (θ1 , θ2 , . . . , θk ) =
[
eξ1 θ1 +ξ2 θ2 + ···+ξk θk g (0)

]
1×m

.

All the performed activities captured in the video data are
front-to-parallel with the camera plane in this paper; all the
joints therefore have an axis orientation parallel to the Z-axis
on the camera plane. Therefore, only half of the human model
is employed to construct the QNT, as shown in Fig. 4.
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The base body reference frame F0 is located at the hip, and
by employing the normalized qualitative representation and the
concept of fuzzy qualitative robot kinematics [18], the product
of exponential maps for the arm kinematics chains with respect
to base frame g(0) over time T can be obtained as

garm (QS(θ1 , θ2 , θ3)) =
[
eξ1 θ1 +ξ2 θ2 +ξ3 θ3 garm (0)

]
1×m

where

garm(0) =


 I


 LT

LU + LL

0




0 1


 (13a)

ωarm = [ω1 ω2 ω3 ] =


0 0 0

0 0 0
1 1 1


 (13b)

qarm = [ q1 q2 q3 ] =


0 LT LT

0 0 LU

0 0 0


 (13c)

ξarm = [ ξ1 ξ2 ξ3 ] =




0 0 −LU

0 −LT −LT

0 0 0
0 0 0
0 0 0
1 1 1


 (13d)

where

0 = [ 0 0 0 0 ] ; 1 = [ 1 1 0 0 ] .

The product of exponential mapping for leg kinematics chains
with respect to the same base frame over T is given as

gleg (QS(θ4 , θ5)) =
[
eξ4 θ4 +ξ5 θ5 gleg (0)

]
1×m

gleg (0) =


 I


−LS − LV

0
0




0 1


 (14a)

ωleg = [ω4 ω5 ] =


0 0

0 0
1 1


 (14b)

qleg = [ q4 q5 ] =


0 −LS

0 0
0 0


 (14c)

ξleg = [ ξ4 ξ5 ] =




0 0
0 −LS

0 0
0 0
0 0
1 1


 . (14d)

An activity is defined as a combination of ordered sequences
of all the independent movements in terms of the human body

segments [4], [12]; hence, for any given activity, its correspond-
ing QNT is derived as

QNT = garm ⊕ gleg . (15)

It is evident that the QNT can be represented by strong dis-
criminative features derived from small set of example activities,
as it is the advantage in terms of real-time performance over a
statistical method that requires large training data. The proposed
QNT method is a supervised learning method, and its training
phase algorithm is provided in Algorithm 1.

III. EXPERIMENTS

In this section, we present the performance of the proposed
approach under different conditions such as tracking errors, size
of training data, the choice of training data, and comparisons
with the HMM (i.e., HMM) and fuzzy HMM (FHMM).

A. Datasets and Preprocessing

We conducted experiments on two public databases: the KTH
database [29] and Weizmann database [2]. Sample images from
all the datasets are shown in Figs. 5 and 6, in which some activ-
ities are somewhat similar in the sense that limbs have similar
motion paths; this high degree of similarity makes the discrimi-
nation more challenging. In addition, all the actors have different
physical characteristics and perform activities differently in both
motion styles and speeds.

Three datasets were created for the validation purpose. First,
we have dataset S1: 225 video streams of three human mo-
tions in three planar view scenarios from each of the 25 sub-
jects were selected from the KTH database. The selected ac-
tivities are walking, running, and jogging. The aim here is
to evaluate the efficacy of the QNT in that walking, running,
and jogging are motions that exhibit similar movements but
are dramatically different in motion meaning. Second, we have
dataset S2: 55 video streams from the six human motions are
employed from the Weizmann database. The selected activ-
ities are bending, walking, jacking, jumping, one-hand wav-
ing (wave1), and two hands waving (wave2). The objective is
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Fig. 5. Example sequences from dataset with four human activities performed
by eight different people. Each activity in the dataset is repeated four times by
each person, where for walking, jogging, and running, each activity is repeated
twice in each directions, i.e., from the left to the right and vice versa. The
whole dataset contains 4 × 8 × 4 = 128 sequences and is a subset of a larger
database presented in [29]. All sequences were obtained with a stationary camera
with frame rates of 25 frames/s and with subsampling of the spatial resolution
to 160 × 120 pixels.

to test the effectiveness of the proposed approach in distin-
guishing a wide variety of human motion that are performed
by different subjects. Finally, we have dataset S3: All video
streams of S1 and only the walking of S2 are selected. The
purpose is to test the generality of the QNT in differentiating
the same human motion from different environments.

For each video sequence created in the datasets, we defined a
five DOF kinematic human skeleton structure. The motion pa-
rameter φt for the six landmarks points on the proposed human
model as in Fig. 4, including the reference landmark point, are
obtained using a visual tracking approach [10]. The numbers
of particles are selected as 400, 800, and 2000, respectively.
Further, φt are mapped into their associated sequence discrete
symbolic representation (i.e., qualitative states in the fuzzy qual-
itative unit circle). The level of resolution in the fuzzy qualitative
unit circle is set to s = 12 and r = 16 for translation and ori-
entation components, respectively. Finally, the QNTs for each
human motion are constructed using the fuzzy qualitative robot
kinematics algorithm [19], and human motion recognition is
carried out afterwards. Fig. 7 shows the visualization of the
activity model derived from eight different subjects.

Fig. 6. Example sequences from dataset with six human activities performed
by nine different persons. The whole dataset contains 6 × 9 = 54 sequences
and is a subset of a larger database presented in [2].

B. Results and Analysis

Human-motion recognition aims to recognize the type of ac-
tivities performed by people in test sequences against results
from training sequences. The datasets were divided into train-
ing sets and test sets with respect to subjects, such that the same
person will not appear in the test and training sequences simul-
taneously. As the size of the datasets is relatively small, random
permutations of the training and testing sets are considered, and
the recognition rates were averaged. For each of the datasets S1,
S2, and S3, we repeated the process 50 times and evaluated the
performance of the proposed method; the correct classification
rate (CCR) is used to justify the recognition rate. CCR is the
ratio of correctly classified number of activities to the total num-
ber of the same activity. For activity classification, we adopted
the nearest-neighbor classifier, where the Euclidean metric was
used as the distance measure.

The recognition results for each dataset are shown in
Tables III–V, respectively. The conclusions are drawn as fol-
lows. First, the percentages of correct classification of the pro-
posed approach are acceptable for all three datasets. The mean
of classification accuracy for each dataset is higher than 80%.
The recognition rates of the three datasets with different number
of particles N in the condensation algorithm are almost similar.
This demonstrated that the proposed data-quantization process
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Fig. 7. Visualization of activities manifold: each of the five activities from eight subjects in quantity space. (a) Subject 1. (b) Subject 2. (c) Subject 3.
(d) Subject 4. (e) Subject 5. (f) Subject 6. (g) Subject 7. (h) Subject 8.

TABLE III
RECOGNITION RATE FOR S1

has sufficiently relaxed the tradeoff between tracking precision
and computational cost in the visual tracking algorithm. Second,
the QNT are informative without necessary data lost, particu-
larly in dataset S1, where the three activities exhibit very similar
movement but have substantially different meanings. The QNT
misclassified only a small number of subjects given by the three
tested human motions in S1. Actually, the misclassified data are
even hardly distinguishable from a human perspective. A con-
fusion matrix in Fig. 8 is shown to analyze which activity has
been incorrectly classified. It has shown that the algorithm mis-
classified some of the walking and running activities. Third, we
showed the true positive fraction (TPF) and false positive frac-
tion (FPF) via the leave-one-out rule in the verification model.
This is to test the capability of a pattern classifier to verify
whether a new measurement belongs to certain claimed class.
Fig. 9 shows the receiver operating characteristic (ROC) curves
of the three activities (i.e., jogging, running, and walking) in the
datasets. The reason we only chose these three activities is that
these three activities exhibit similar actions, and it is interest-
ing to see how the proposed templates coped. Finally, Table V
shows the generality results of the QNT in terms of differenti-
ating the same human motion from different environments, i.e.,
the constructed walking QNT from dataset S1 is employed to
recognize the walking data in S2 and vice versa. Similar recog-
nition rates were achieved from both set of experiences. This
illustrates that the proposed QNT are generic and insensitive to
different motion styles, speeds across different human anatomy,
and environments.

TABLE IV
RECOGNITION RATE FOR S2

TABLE V
RECOGNITION RATE FOR S3

Fig. 8. Confusion matrices. Comparison of activity classification results in
the KTH and Weizmann database.

C. Quantitative Comparison

A comparison was carried out between the dominant recog-
nition methods (i.e., an HMM [28] and an FHMM [23]) and
the proposed method. A four-state left–right discrete HMM
is selected for the comparison, the preprocessing steps were
conducted as given in [27], and the FHMM was conducted as
in [24]. The number of states is empirically determined, and it
is observed that an increase to a larger number of states did not
result in any performance gains. Each model was trained using
1%, 20%, and 50% of randomly selected instances of human
motions, and the rest were employed as testing data. The com-
parison results are provided in Tables VI–VIII, respectively. It
is observed that on the three data sets, the QNT outperforms
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Fig. 9. ROC curves for three activities that exhibit similar actions. The dotted diagonal line shows the random prediction. (a) ROC curve for kicking. The area
under the ROC curve is 0.966026. (b) ROC curve for running. The area under the ROC curve is 0.923142. (c) ROC curve for walking. The area under the ROC
curve is 0.957291.

TABLE VI
COMPARISON WITH THE HMM AND FHMM

both the HMM and FHMM. Note that the QNT employed in
this experiment was constructed from 400 particles with 1%
training data, while the best models in the HMM and FHMM
were employed for this comparison.

The simulation results have confirmed that the effectiveness
of the HMM and FHMM models are significantly dependant on
the accuracy of the training data and the amount of training data
employed. For instance, in Table VI, the classification rate of the
HMM and FHMM using 1%, 20%, and 50% training data had
a big impact of the recognition rate, whereas the QNT is fairly
consistent. One of the main reasons is that the proposed solution
is not a statistical learning method; hence, it does not require
large training data. Instead strong discriminative features are re-
quired from example activities. A further analysis by employing
one subject sequentially as the only training data and the rest
as testing data results in Table VII shows that the choice of the
selection has a significant influence on the recognition rate in
the HMM and FHMM. The worst and the best achieved differ
by approximately 50% for the HMM and 48% for the FHMM,
while the QNT only differs by approximately 2%. Besides, both
the HMM and FHMM are also notoriously sensitive to the pre-
cision of the training data. This is notable from Table VIII as
N = 400, and the average percentage of successful recognition
is only 51% for the three datasets. However, at a much higher
resolution of the tracking algorithm, the average percentage of
successful recognition rate increases to more than 80%. Bear
in mind that the high recognition rate is achieved at the cost of
significant computational power.

D. Complexity Analysis

The condensation algorithm is an approximation technique by
representing the posterior density as a set of samples of the state

TABLE VII
COMPARISON WITH THE HMM AND FHMM

space with associated likelihood weights ωi
t , i ∈ {1, . . . , N}.

The sample set approximation of the current posterior density
p(Xt |O1:t) can be obtained via

p(Xt |O1:t) ≈
N∑

i=1

ωi
tδ(Xt − xi

t) (16)

where δ(Xt − xi
t) denotes the Dirac delta function. Therefore,

the complexity of a standard condensation algorithm has a com-
putational complexity of O(2N), where N is the number of
particles.

In the meantime, the forward, backward, and Viterbi algo-
rithms are the central elements of HMM training and testing.
All have the same computational complexity [13], and the equa-
tion for the standard forward algorithm is

αj (t) =

(∑
i

αi(t − 1)aij

)
bj (ot) ∀j, t. (17)

The complexity of the standard algorithm is normally given
as O(M 2T ), where M is the total number of unique states in
the HMM, and T is the number of observations.

In Table IX, a comparison of the computational complexity
of the HMM, FHMM, and QNT method is shown. The QNT
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TABLE VIII
COMPARISON WITH HMM AND FHMM

TABLE IX
COMPARISON OF ALGORITHMS COMPUTATIONAL COMPLEXITIES

TABLE X
COMPARISON OF ALGORITHM COMPUTATIONAL COMPLEXITIES VERSUS

RECOGNITION RATE

method outperformed both the HMM and FHMM in twofolds.
First of all, the proposed solution does not need to employ a large
amount of particles N to perform tracking as the proposed data
quantization process can account for tracking error, as shown
in Table II. Second, the proposed method is not a statistical
learning method; hence, the algorithm does not need to loop until
convergence. Furthermore, Table X shows a comparison of the
recognition rate of the HMM, FHMM, and our proposed method
against the computational complexity. It is notable that in order
to achieve the recognition rate with our proposed method on each
data set S1, S2, and S3, the HMM and FHMM computational
complexities are at least five times higher than our proposed
method.

IV. CONCLUDING REMARK

In this paper, a fuzzy qualitative approach has been proposed
to solve real-time vision-based human motion analysis. It has
integrated human motion tracking and recognition algorithms
with fuzzy qualitative robot kinematics. The simulation results
have shown that the proposed method outperforms the dominant
recognition methods, i.e., the HMMs and FHMMs. It is demon-
strated that the proposed method can be applied to recognize a
range of human motions for a real-time human motion recog-
nition system from the computation perspective. The proposed
algorithm has achieved average computational time at about
0.010591 s per individual human motion recognition; on the

other hand, the frame rate of a closed-circuit television (CCTV)
image sequence is usually reduced to 10–15 frames per sec-
ond when in use. That the proposed recognition method is at
least ten times faster than the frame rate of CCTV image se-
quences is effective enough to be implemented in a real-time
vision-based human motion analysis. It is clearly evident that
the proposed method can meet real-time requirement for human
motion recognition. However, there are still some problems that
keep the proposed method from real-world application. First,
initial parameters of an image sequence are manually edited in
human motion tracking. It has been confirmed that it is one of the
most challenging problems for the computer vision community.
Second, issues related to object tracking algorithms such as par-
tial occlusion, clutter, and environmental lighting changes still
remain as open problems to further apply the proposed method
to real-world application. Additionally, we are trying to over-
come the aforementioned image processing problems by under-
standing scenario-context information without accurate human
motion extraction. For instance, we are currently developing
multiple QNTs from different viewpoints to construct a pseudo
3-D motion template, which allows reasoning the human mo-
tion analysis under environmental uncertainty such as lighting
and clutter background, which relax the requirements on accu-
rate initial image parameters and uncertainty caused by the sur-
roundings. We aim to develop a compositional model that uses
predominantly knowledge-based techniques to translate among
high-level human motion scenarios, Gaussian mixture models,
and filtered numerical data of human motions [17].
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