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a b s t r a c t 

By and large, existing Intellectual Property (IP) protection on deep neural networks typically i) focus 

on image classification task only, and ii) follow a standard digital watermarking framework that was 

conventionally used to protect the ownership of multimedia and video content. This paper demonstrates 

that the current digital watermarking framework is insufficient to protect image captioning tasks that are 

often regarded as one of the frontiers AI problems. As a remedy, this paper studies and proposes two 

different embedding schemes in the hidden memory state of a recurrent neural network to protect the 

image captioning model. From empirical points, we prove that a forged key will yield an unusable image 

captioning model, defeating the purpose of infringement. To the best of our knowledge, this work is the 

first to propose ownership protection on image captioning task. Also, extensive experiments show that 

the proposed method does not compromise the original image captioning performance on all common 

captioning metrics on Flickr30k and MS-COCO datasets, and at the same time it is able to withstand both 

removal and ambiguity attacks. Code is available at https://github.com/jianhanlim/ipr-imagecaptioning 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recent advances in deep neural networks (DNN) had signifi- 

antly improved the overall model performance in multiple artifi- 

ial intelligence (AI) domains, for example, natural language pro- 

essing, computer vision, gaming, etc. As a result of this, it has 

nabled a growing number of AI start-ups and companies to of- 

er their DNN solutions in terms of Software as a Service (SaaS). 

s such, the protection of the Intellectual Property (IP) of DNN has 

ecome a necessity in order to protect the model against IP in- 

ringement to preserve the owner’s competitive advantage in an 

pen market. 

For the past few years, IP protection on DNN [1–8] has been a 

ignificant research area. Ideally, the goal is the IP protection so- 

ution should not degrade the performance of the original model, 

nd at the same time, it must also be resilient against both am- 

iguity and removal attacks. Although all these existing solutions 

ave achieved this goal, it is unsatisfactory in our view as we 

ound out that all existing DNN watermarking methods have been 
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i) following a standard digital watermarking framework that was 

onventionally used to protect the ownership of multimedia and 

ideo content, and (ii) focusing on DNNs for classification tasks 

hat map images to labels and DNNs for other tasks are forgotten 

uch as image captioning that map images to texts. 

A natural question is then why not directly apply existing wa- 

ermarking methods [1,8] designed for the classification DNNs to 

atermark the DNNs in image captioning. Unfortunately, it is not 

he case for the white-box watermarking methods. The obstacles 

ie in several fundamental differences between these two kinds 

f DNNs. First, DNNs for classification output a label. In contrast, 

NNs for image captioning output a sentence. Second, classifi- 

ation is about finding the decision boundaries among different 

lasses, whereas image captioning is not only to understand the 

mage content in depth beyond category or attribute levels but 

lso to connect its interpretation with a language model to cre- 

te a natural sentence [9] . We demonstrated in Figs. 1 , 4 , and

ection 4.2 that a recent digital watermarking framework [8] that 

sed to protect deep-based classification model is insufficient to 

rotect image captioning models. Fig. 1 shows that [8] is insuffi- 

ient to be deployed to protect the IP of the image captioning task 

s compared to our proposed model, against the baseline model. 

t can be noticed that the caption generated by Fan et al. [8] is

ncomplete and incorrect, while the caption generated from our 

https://doi.org/10.1016/j.patcog.2021.108285
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. Comparison of the baseline model (in yellow), passport model [8] (in blue), and proposed model (in red) on two public datasets. Best view in color.. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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odel is very near to the baseline model. In addition, the CIDEr-D 

nd SPICE score of our model is very near to the baseline as com- 

ared to Fan et al. [8] on MS-COCO and Flickr30k datasets. 

As a remedy, this paper proposes a novel embedding frame- 

ork that consists of two different embedding schemes to em- 

ed a unique secret key into the recurrent neural network (RNN) 

ell [10] to protect the image captioning model against various at- 

acks. Specifically, we show that embed a secret key into the hid- 

en memory state of an RNN is the best choice for the image cap-

ioning task such that a forged key will immediately yield an un- 

sable image captioning model in terms of poor quality outputs, 

efeating the purpose of infringement. 

On the one hand, our solution bears a similarity to digital wa- 

ermarking - they both embed certain digital entities into models 

uring training sessions. In terms of IP protection, however, em- 

edded watermarks only enable the verification of the ownership 

f models. One has to rely on government investigation and en- 

orcement actions to discourage IP infringement. Whether this kind 

f approach can provide reliable, timely , and cost-effective juridi- 

al protection remains questionable. On the other hand, our key- 

rotected models will not function normally unless the valid key is 

rovided, thus immediately preventing the unlawful usages of the 

odels with no extra costs. Indeed, we regard this proactive pro- 

ection as the most prominent advantage of our solution over digi- 

al watermarking. For instance, in Fig. 6 , the protected model with 

 valid key demonstrated almost identical performance as that of 

he original model, in contrast the same model presented with a 

orged key has a huge performance drop in all metric scores. 

The contributions are threefold: (i) We renovate the paradigm 

f digital watermarking based neural network IP protection, by 

roposing a key-based strategy that provides reliable, preventive 

nd timely IP protection ( Section 3.1 ) at virtually no extra cost 

 Section 4.6 ) for image captioning task. (ii) This paper formulates 

he problem and proposes a generic solution as well as concrete 

mplementation schemes that embed a unique key into RNN mod- 

ls through the hidden memory state ( Section 3; Fig. 2 b). We prove

hat a forged key will yield a useless image model. Also, we em- 

irically show the effectiveness of our approach against various at- 

acks and prove the ownership of the model ( Section 4 ); and (iii)

o the best of our knowledge, we are the first to propose IP pro-

ection on image captioning model and we demonstrated that the 

roposed method does not compromise the original image caption- 

ng performance on all common captioning metrics on Flickr30k 

nd MS-COCO datasets ( Table 1 ). 

. Related work 

Conventionally, digital watermarks were extensively used in 

rotecting the ownership of multimedia contents, including im- 

ges, videos, audio, or functional designs. It is a process of embed- 
2 
ing a marker into the content and subsequently using it to ver- 

fy the ownership. In deep learning, the IP protection on the mod- 

ls can be categorized into (i) white-box based solution [1,2] , (ii) 

lack-box based solution [3–6,11] or (iii) a combinatorial of both 

hite and black based solution [7,8] . 

The first work that introduced digital watermarks for DNN was 

roposed by Uchida et al. [1] , where the authors embedded a 

atermark into the weights parameters via parameter regularizer 

uring the training as white-box protection. For verification, own- 

rs are required to access the model parameters to extract the 

atermark. To remedy this issue, [3–6,11] proposed digital water- 

arks in a black-box setting. In this setting, a set of trigger set 

mages is generated as random image and label pairs. During train- 

ng, the feature distributions of those images are distant from the 

abeled training samples. During verification, the trigger set water- 

ark can be extracted remotely without the need to access the 

odel weights. For example, Zhang et al. [3] introduced three dif- 

erent key generations which are content-based, noise-based, and 

nrelated-based images respectively. Adi et al. [4] proposed a wa- 

ermarking method similar to [3] but their main contribution is 

he model verification. While Merrer et al. [6] proposed to use ad- 

ersarial examples as the watermark key set to modify the model 

ecision boundary. Quan et al. [11] aimed to develop a black-box 

atermarking method in images to images tasks such as image 

enoising and super-resolution by exploiting the overparameteri- 

ation of the model. 

Recently, [7,8] presented a watermarking framework that works 

n both white-box and black-box settings. Rouhani et al. [7] em- 

edded watermark in activation of selected layers of the DNN by 

ntegrating two additional regularization loss terms, binary cross- 

ntropy loss, and Gaussian Mixed Model (GMM) agent loss. It is 

obust against pruning, fine-tuning, and overwriting attack but re- 

uire more computation. The work that most closer to us is Fan 

t al. [8] added special “passport” layers into the DNN model to 

nable ownership verification. With a forged passport, the perfor- 

ance of the model will significantly deteriorate. This design relies 

n the secrecy of passport layer weights that requires the owner to 

eep the passport layer weights secret from the attacker. However, 

mpirically, we demonstrated that [8] does not able to protect the 

mage captioning model effectively. 

. Approach 

Our image captioning framework of interest is a simplified vari- 

nt of the Show, Attend and Tell model [9] . It is a popular frame-

ork that forms the basis for subsequent state-of-the-art works on 

mage captioning [12–20] . It follows the encoder-decoder frame- 

ork, where a convolutional neural network (CNN) is used to en- 

ode an image into a fixed-size representation, and the long short- 

erm memory (LSTM) is employed to generate the captions. 
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Fig. 2. An overview of our approach. (a) The original LSTM Cell and (b) LSTM Cell with key embedding operation O ∈ { M � , M �} (see Section 3.2 ). 

Table 1 

Comparison between our approaches ( M �, M �) with baseline and Passport [8] on MS-COCO and Flickr30k datasets, across 5 common metrics where B-N, M, R, C, and S 

are BLEU-N, METEOR, ROUGE-L, CIDEr-D, and SPICE scores. BOLD is the best result and ∗ is the second best result. 

Methods 

MS-COCO Flickr30k 

B-1 B-2 B-3 B-4 M R C S B-1 B-2 B-3 B-4 M R C S 

Baseline 72.14 55.70 41.86 31.14 24.18 52.92 94.30 17.44 63.40 45.18 31.68 21.90 18.04 44.30 41.80 11.98 

Passport [8] 68.50 53.30 38.41 29.12 21.03 48.80 84.45 15.32 48.30 38.23 26.21 17.88 15.02 32.25 28.22 9.98 

M � 72.53 56.07 42.03 30.97 24.00 52.90 ∗91.40 ∗17.13 62.43 44.40 30.90 21.13 ∗17.53 43.63 ∗40.07 ∗11.57 

M �
∗72.47 ∗56.03 ∗41.97 ∗30.90 ∗23.97 52.90 91.60 17.17 ∗62.30 ∗44.07 ∗30.73 ∗21.10 17.63 ∗43.53 40.17 11.67 
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Given an image I, it is encoded into a fixed-size feature vector 

sing CNN as followed: 

 = f c (I) (1) 

here f c (·) represents CNN encoder in our models, X is the image 

eature vector. 

In the decoder, the image feature vector X is fed into LSTM at 

ach time step t to output the probability of next word S t as: 

 t = LST M(X, h t−1 , m t−1 ) (2) 

p(S t | S 0 , . . . , S t−1 , I) = F 1 (h t ) (3) 

here h t−1 is the previous LSTM’s hidden state, m t−1 is the pre- 

ious memory cell, F 1 (·) is a nonlinear function that outputs the 

robability of S t , p is the probability of next word S t with image I

nd previous words S 0 , . . . , S t−1 . 

Unless otherwise stated, our models are trained under the max- 

mum likelihood estimation (MLE) framework, where the prob- 

bility of generating a correct caption of length T with tokens 

 

S 0 , . . . , S T −1 } for an image I is directly maximized: 

og p ( S | I ) = 

T ∑ 

t = 0 

log p ( S t | I, S 0 : t−1 , c t ) (4) 

here t is the time step, p ( S t | I, S 0 : t−1 , c t ) is the probability of 

enerating a word given an image I, previous words S 0 : t−1 , and 

ontext vector c t . 

.1. Problem formulation 

Let N denote an image captioning model to be protected by a 

ecret key k , after a training process, the image captioning model 

mbedded with the key is denoted by N [ K] as shown in Fig. 2 . The

nference of such a protected model can be characterized as a pro- 

ess M that modifies the model behavior according to the running- 

ime key l: 

(N [ K] , l) = 

{
M K , if l = K, 

M K̄ , otherwise , 
(5) 
3 
n which M K is the network performance with key correctly veri- 

ed, and M K̄ is the performance with the incorrect key i.e., K̄ � = K.

The properties of M(N [ K] , l) defined below are desired for the 

ake of IP protection: 

efinition 1. If l = K, the performance M K should be as close 

s possible to that of the original network N . Specifically, if the 

erformance inconsistency between M K and that of N is smaller 

han a desired threshold, then the protected network is called 

unctionality-preserving . 

efinition 2. If l � = K, on the other hand, the performance M K̄ 

hould be as far as possible to that of M k . The discrepancy be-

ween M K and M K̄ therefore can be defined as the protection- 

trength . 

.2. Embedding operation 

Fig. 3 a shows the overview of the embedding process. Our em- 

edding process can be represented as E O 
(
D , g , N [ . ] , L 

)
= N [ W , g ] ,

s a RNN learning process. It takes inputs training data D = { I, S} ,
nd optionally signature g , and optimizes the model N [ W , g ] by 

inimizing the given loss L . In this paper, we introduce two differ- 

nt key embedding operations O which are (i) element-wise addi- 

ion model ( M �) or (ii) element-wise multiplication model ( M �): 

 (K, h t−1 , e ) = 

{
K � h t−1 , if e = �, 

K � h t−1 , else. 
(6) 

here k f = { k f,i } N i =1 
with N is the size of the hidden state, k f,i ∈

 : −1 ≤ k f,i ≤ 1 and k b = { k b,i } N i =1 
with k b,i ∈ {−1 , 1 } . 

Then, the embedded key K is represented in terms k b is gener- 

ted by converting the string provided by owner to a binary vec- 

or BE. However, we found that the binary vector for very near al- 

hanumeric, e.g., string A and C, has only a 1-bit difference. There- 

ore, we proposed a new transformation function T : 

 (BE, BC) = BE � BC = k b (7) 

here BC is a binary vector sampled from value of −1 or 1 accord- 

ng to the seed provided by user, to alleviate this issue. 
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Fig. 3. Visual explanation for embedding and verification processes. 
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1 It is actually a list of data wrongly labeled by purpose 
.3. Sign of hidden state as signature 

In order to further strengthen our model, we follow [8] to add 

he sign loss regularization term into the loss function as: 

 g (h, G, γ ) = 

N ∑ 

i =1 

max (γ − h i g i , 0) (8) 

here G = { g i } N i =1 
with g i ∈ {−1 , 1 } consists of the designated bi-

ary bits for hidden state h . To enforce the hidden state to have a

agnitude greater than 0, a hyperparameter γ is introduced into 

he sign loss. However, one of the main differences of our approach 

ompared to [8] is our signature is not embedded in the model 

eights, but it is embedded in the hidden state which is the out- 

ut of the LSTM cell. This is because we found out that embedding 

ignature in the model weights can be easily attacked with a chan- 

el permutation, i.e., change the signature but remains the output 

f the model. 

.4. Ownership verification 

Fig. 3 b shows the overview of the verification process. Suppose 

n owner tries to verify the ownership of a target model, three ver- 

fication methods are proposed: (1) V 1 : Key-based verification; (2) 

 2 : Signature-based verification; and (3) V 3 : Trigger set verification. 

V 1 : Secret key-based verification - In this verification scheme, 

here are two different approaches, depending on the secret key is 

ither public or private. Formerly, the trained model and the public 

ey will be provided to the clients. For model inferences, the public 

ey will be required as part of the input to the model to ensure

he model performance is preserved. The ownership of the model 
4 
an be verified directly by the provided key. Latter, a private key 

s directly embedded into the model. For inference, only image is 

equired as the model input. However, for ownership verification, 

ne has to have access to the model and extract the key from the 

STM cell. 

V 2 : Signature verification - In this verification scheme, a 

nique signature is embedded in the sign of the hidden state dur- 

ng the training process via sign loss regularization. To verify the 

ignature, the owner is required to access the trained model. Then, 

n image will be sent to the model to generate the caption. Dur- 

ng inference time, the sign of the hidden state of the LSTM cell 

ill be extracted and compared with our signature to verify the 

wnership. This binary bits signature can be transformed back to a 

uman-readable string for example the name of the owner. 

V 3 : Trigger set verification - V 1 and V 2 are considered as white- 

ox verification, where the owner is required to have access to the 

odel physically in order to verify the ownership. Hence, we in- 

roduce trigger set verification that can be conducted remotely via 

PI calls. First, a set of trigger set image-caption pairs 1 are gen- 

rated, and then they are used together with the original training 

amples to train an image captioning model. In this paper, the trig- 

er set images are generated by adding noise (e.g., red color patch) 

o an original image so that the model is trained to generate the 

rigger set caption (e.g., this is my trigger set image). For verifica- 

ion, the owner will send the trigger set images to the model and 

est whether the model returns the trigger set caption. 
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Fig. 4. Comparison of captions generated by (a) Baseline, (b) M � (c) M � , and (d) Passport [8] . The first row is the images from Flickr30k dataset. The second row is the 

images from MS-COCO dataset. It is noticed that the quality of the captions generated by our models is very close to the baseline. 
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. Experiments 

This section presents the experiment results of our approaches 

n terms of resilience to ambiguity and robustness to removal at- 

acks. Qualitative analysis is also carried out to compare the qual- 

ty of the caption generated by different approaches. We compare 

he following models: (i) Baseline is implemented based on the 

oft attention model as to [9] , it is an unprotected model. (ii) Pass-

ort [8] is the work that most closer to us that added “passport”

ayers into the DNN model to enable ownership verification. (iii) 

 boldmath M � is our element-wise addition model presented in 

ection 3.2 . (iv) \ boldmath M � is our element-wise multiplication 

odel presented in Section 3.2 . 

We used ResNet-50 [21] pre-trained on the ImageNet dataset 

s the encoder. The image features are extracted using ResNet-50 

ithout fully connected layers, resulting in 7 × 7 × 2048 dimen- 

ional outputs. For the decoder part, we use LSTM with a dropout 

ate of 30%. Both the word embedding and hidden state are set 

o 512. We set the attention loss factor to 0.01. The LSTM de- 

oder is trained using a learning rate of 1e −4 for 8 epochs and

netune the CNN with a learning rate of 1e −5 up to 20 epochs. 

he model is trained by cross-entropy loss with a mini-batch size 

f 32 using Adam [22] optimizer with β1 set to 0.9, β2 set to 

.999, and ε set to 1e −6. We apply gradient clipping to prevent 

ny gradient to have norm greater than 5.0 to prevent explod- 

ng gradients. We repeated all experiments 3 times to get the av- 

rage performance. The beam size is set as 3 in the inference 

tage. 
p

5 
.1. Dataset and metrics 

We train and evaluate our approaches on MS-COCO [23] and 

lickr30k [24] datasets, which are widely used for the image cap- 

ioning task. We followed the widely used split in Karpathy and 

ei-Fei [15] for both datasets. MS-COCO contains 113,287 training 

mages with 5 human-annotated captions for each image. The val- 

dation and test sets contain 50 0 0 images each. Flickr30k contains 

0 0 0 images for validation, 10 0 0 for test, and the rest for training.

e truncated captions longer than 20 words and converted all the 

ords into lower case. Fixed vocabulary size of 10,0 0 0 is used for 

oth datasets. 

We evaluate our approaches using all common metrics in the 

mage captioning task: CIDEr-D [25] , SPICE [26] , BLEU [27] , ME- 

EOR [28] , and ROUGE-L [29] . However, CIDEr-D and SPICE have 

een shown to have a higher correlation with human judgments 

ompared to BLEU and ROUGE [25,26] , but it is common practice 

o report all the aforementioned metrics in the image captioning 

ask. 

.2. Comparison with CNN-based watermarking framework 

For comparison with the existing digital watermarking frame- 

ork, we re-implement [8] using the official repository and re- 

er this model as Passport. We choose [8] because the work is 

omehow similar to ours in terms of technical implementation. In 

able 1 , we can notice that the overall performance of the Pass- 

ort model on both MS-COCO and Flickr30k datasets is very poor 
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Table 2 

Comparison between Passport [8] with (top) correct passport and (bottom) forged passport on MS-COCO and Flickr30k datasets, across 5 common metrics where B-N, M, 

R, C, and S are BLEU-N, METEOR, ROUGE-L, CIDEr-D, and SPICE scores. It can be clearly seen that Passport model [8] is clearly insufficient to protect the image captioning 

model as the performance with correct and incorrect passport across all 5 metrics are almost similar. 

Methods 

MS-COCO Flickr30k 

B-1 B-2 B-3 B-4 M R C S B-1 B-2 B-3 B-4 M R C S 

Passport 68.50 53.30 38.41 29.12 21.03 48.80 84.45 15.32 48.30 38.23 26.21 17.88 15.02 32.25 28.22 9.98 
¯Passport (forged) 67.50 52.65 37.15 29.01 20.95 47.90 83.00 15.00 47.30 37.87 26.01 17.10 14.82 31.88 26.50 9.90 

Fig. 5. Comparison of captions generated by (a) Passport [8] with correct passport, (b) Passport [8] with forged passport. The first row is the images from Flickr30k dataset. 

The second row is the images from MS-COCO dataset. 
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Table 3 

Fine-tuning attack: CIDEr-D (in-bracket) of baseline and proposed models (Left: 

MS-COCO fine-tune on Flickr30k. Right: vice-versa.) Accuracy (%) outside bracket 

is the signature detection rate. 

Methods 

MS-COCO Flickr30k 

MS-COCO Flickr30k Flickr30k MS-COCO 

Baseline − (94.30) − (37.70) − (41.80) − (88.50) 

M � 100 (91.40) 70.40 (37.50) 100 (40.07) 72.50 (87.30) 

M � 99.99 (91.60) 71.50 (37.8) 99.99 (40.17) 71.35 (86.50) 
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ompared with the baseline and our proposed methods. For ex- 

mple, the CIDEr-D score dropped 10.45% (MS-COCO) and 32.49% 

Flickr30K), respectively when compared to the baseline. In con- 

rast, both of our proposed methods only dropped 3–4% on both 

S-COCO and Flickr30K datasets when compared to the baseline. 

In terms of qualitative comparison, Fig. 4 shows the sample 

aptions generated by the Passport model are relatively brief when 

ompared to the baseline and our approaches. For instance, the 

rst image in Fig. 4 , our proposed model generated a woman in a

carf is standing , it matches with the ground truth provided by the 

aseline, but the Passport model only generated a woman , miss- 

ng the rest of the rich context altogether. A similar observation is 

ound for the rest of the images. 

Furthermore, we conducted an experiment to attack the Pass- 

ort model with a forged passport and found out the Passport 

odel still can have a relatively high CIDEr-D score. In Table 2 , we

how the quantitative results of the Passport model with the cor- 

ect passport vs. Passport model with a forged passport. We found 

ut that the Passport model with forged passport still can achieve 

ery similar results on MS-COCO and Flickr30k datasets as to the 

assport model with correct passport. For example, it has a CIDEr- 

 score of 83.0 (84.45) and 26.5 (28.22) on both datasets. In terms 

f qualitative comparison, Fig. 5 shows the captions generated by 

he Passport model with (a) correct and (b) forged passport. It can 

e noticed that both models generate almost similar captions in 

erms of word selection and caption length. As a conclusion, we 

educe that the conventional digital watermarking framework is 

nsufficient to protect the image captioning model. 

.3. Fidelity evaluation 

Fidelity is defined as matching the performance of the origi- 

al model. In this section, we show that our proposed embedding 
6 
chemes do not degrade the overall model performance in terms of 

etrics, as well as the quality of the generated sentences. Accord- 

ng to Table 1 , it shows that the overall performance of our ap-

roaches and baseline model on MS-COCO and Flickr30k datasets 

n all 5 image captioning metrics. Specifically, we can observe that 

 � performed the best as it out-performed baseline in BLEU1-3 

core on MS-COCO dataset, and BLEU-1 in Flickr30K dataset, re- 

pectively. For the rest of the metric score, we can also observe 

hat M � came as 2nd best score. In contrast, [8] performed poorly 

ith at least a 10% drop in all metrics. 

Subsequently, Table 4 shows the comparison of the uniqueness 

f generated caption from our approaches and baseline model. A 

aption is considered unique if the generated caption does not ex- 

st in the training dataset. On both datasets, it shows that our ap- 

roaches have very similar uniqueness and average caption length 

ompared to baseline. This is consistent with the caption gener- 

ted shown in Fig. 4 . For example, both of our models have an

xact caption generated as to baseline on the first image. And sub- 

equently, in the rest of the images, the choice of words generated 

i.e., shirt, room, road, swinging) are also very consistent with the 

aseline. 
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Fig. 6. CIDEr-D on Flickr30k and MS-COCO datasets under ambiguity attack on (a-b) key; (c-d) signature. 

Table 4 

Comparison of the uniqueness of caption generated by 

our approaches and baseline model. ̂ M � and ̂ M � are 

M � and M � , respectively but with forged secret key. 

Avg-L stands for average length. 

Methods 

MS-COCO Flickr30k 

Unique Avg-L Unique Avg-L 

Baseline 62.93% 8.86 88.80% 9.50 

M � 70.96% 8.81 88.00% 9.30 

M � 70.26% 8.91 87.10% 9.28 ̂ M � 100.00% 19.97 97.40% 18.56 ̂ M � 88.44% 12.71 53.40% 7.69 
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.4. Resilience against ambiguity attacks 

.4.1. Protection against forged key 

In this case, we assume the attacker somehow has the access to 

he model but does not have the correct secret key and so tries to 

ttack the model with a random forged key. Fig. 6 (a-b) show the 

IDEr-D score of proposed models under ambiguity attack on the 

ecret key in Flickr30k and MS-COCO datasets. Accordingly, we can 

bserve that in general, the model performance will drop when a 

orged key is deployed. In particular, we would like to highlight 

hat the CIDEr-D score on MS-COCO dataset drops significantly (al- 

ost 50% difference) in M � even a forged key that has a 75% sim-

larity to the real key is being deployed. This shows that our pro- 

osed method is resilient against this forged key attack. 

Fig. 7 shows another six sample images and the respective cap- 

ions generated by our proposal and baseline. From the first image, 

t shows that given the correct secret key, our proposed method is 

ble to generate a caption that consists of object, scene, and at- 

ributes that are very similar to baseline. When a forged key is 

sed, in this example, we show in Fig. 7 (c) a forged key that has

 75% similarity to the correct secret key and in Fig. 7 (d) another

orged key that has a 50% matching to the correct secret key, the 
7 
enerated caption is either not meaningful at all with repetitive 

ords (i.e., a man and a man) or a very brief caption (i.e., two 

ogs). According to Table 4 , we can also observe similar patterns. 

or instance, ̂ M � has almost 100% uniqueness with the longest 

verage caption length on both datasets. From Fig. 7 , we can un- 

erstand that this is due to repetitive words. Meanwhile, ̂ M � has 

8.44% uniqueness with the shortest average caption length on the 

lick30K dataset. Yet again, this phenomenon is observed from the 

enerated caption in Fig. 7 . 

.4.2. Protection against fake signature 

In this case, we assume the secret key is exposed to the at- 

acker and one can use the model with original performance. 

owever, the signature is able to use as proof of ownership. As 

uch, the attacker will try to attack the signature by attempting 

o change the sign of the signature. Fig. 6 (c-d) show the overall 

erformance of our proposed models (CIDEr-D score) will decrease 

hen the signature is being compromised on both Flickr30k and 

S-COCO datasets. For instance, even very small changes (only 10% 

f the sign are toggle), we can observe at least a 10–15% drop of 

erformance in terms of CIDEr-D score; and when half of the sign 

re toggle, it is seen that the model performance is almost use- 

ess. In Fig. 8 , when 10% of the sign are modified, it can be seen

hat the captions generated by the model are relatively brief and 

horter than the original model. For example in the second image, 

t shows that the generated caption is without ”a rock” when 10% 

f the sign are modified. When 50% of the sign are toggle, the cap- 

ions are repetitive words. 

.5. Robustness against removal attacks 

.5.1. Model pruning 

Generally, model pruning is used to reduce the weights and 

omputation overhead of a DNN model. However, the attacker 

ight leverage it to remove the signature in the model. In order 

o test our approaches is robust to this attack, we implemented 
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Fig. 7. Comparison of captions generated from (a) Baseline, (b) M � , (c) M � with the forged key has 75% similarity as to real key and (d) M � with the forged key has 50% 

similarity as to real key. The first row is the images from Flickr30k dataset. The second row is the images from MS-COCO dataset. 
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lass-blind pruning method [30] . Fig. 9 shows the CIDEr-D score 

nd signature detection rate on M � and M � against different prun- 

ng rates. We show that even 60% of the network parameters are 

runed, the signature detection rate is still intact at more than 84% 

nd 91% on both Flickr30k and MS-COCO datasets, respectively. 

ig. 10 shows that the pruned model can still generate a mean- 

ngful caption for the images from both Flickr30k and MS-COCO 

atasets. As a summary, we show that even 60% of the network 

arameters are pruned, the signature detection rate and the qual- 

ty of the caption are still intact. 

.5.2. Fine-tuning 

Here, we simulate an attacker who fine-tunes the stolen model 

ith a new dataset to obtain a new model that inherits the per- 

ormance of the stolen model while attempting to remove the em- 

edded signature. Table 3 shows the signature detection rate and 

IDEr-D score of the proposed model after perform fine-tuning. 

he signature can be detected at almost 100% accuracy for our 

pproaches in the original task. After fine-tuning the model (e.g., 

rom MS-COCO to Flickr30k or Flickr30k to MS-COCO), we show 

hat our approaches achieve comparable CIDEr-D score as to the 

aseline, however, we observe the signature detection rate de- 

reased to around 70%. This is one of the limitations of the pro- 

osed method but overall it does not compromise the IP protec- 

ion of the model as we still have the secret key to act as proof

f ownership. Therefore, the proposed secret key working together 

ith the signature in this paper can act as complete protection for 

wnership verification. 
8 
.5.3. Key pruning 

If an attacker knows a key is in place, instead of pruning the 

odel, we simulate an attacker to prune the key rather than model 

eights. Fig. 11 shows the CIDEr-D score and signature detection 

ate on M � and M � against different key pruning rates. We show 

hat even the attacker prunes 100% on the key, the signature de- 

ection rate still remains at more than 98% and 95% on both MS- 

OCO and Flickr30k datasets. Since key pruning has changed the 

riginal key, it degrades the performance of the proposed model 

s well. As shown in Fig. 11 , the CIDEr-d score continues to drop

hen the key pruning rate increases. Hence, the proposed secret 

ey and signature can protect the ownership of the model against 

he key pruning attack. 

.5.4. Fine-tuning key and signature 

This experiment is different from Section 4.5.2 , here, we sim- 

late an attacker who knows everything about the model, i.e., 

he training procedure, the training parameters, the dataset used, 

nd the key/signature. The attacker fine-tunes the model with a 

ifferent key/signature following the same training steps. Table 5 

hows the CIDEr-D score and the signature detection rate of the 

roposed model after perform key and signature fine-tuning. Af- 

er fine-tuning the model to a new key and signature, we show 

hat our approaches achieve a slightly lower CIDEr-D score ( −1% 

o −5%) as compared to the protected model. However, the signa- 

ure detection rate dropped from almost 100% to around 68%. This 

s the worst-case scenario where the model is difficult to protect 

gainst the attacker who knows everything about the model in- 

luding the training steps. 
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Fig. 8. Comparison of captions generated from (a) Baseline, (b) M � , (c) M � with 10% of the sign are toggle and (d) M � with 50% of the sign are toggle. The first row is the 

images from Flickr30k dataset. The second row is the images from MS-COCO dataset. 

Table 5 

Fine-tuning key and signature attack: CIDEr-D (in-bracket) of proposed models 

(Left: MS-COCO. Right: Flickr30k.) Accuracy (%) outside bracket is the signature de- 

tection rate. 

Methods 

MS-COCO Flickr30k 

Protect Attack Protect Attack 

M � 100 (91.40) 68.08 (89.60) 100 (40.07) 69.14 (39.70) 

M � 99.99 (91.60) 68.16 (89.6) 99.99 (40.17) 67.96 (38.1) 
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Table 6 

Comparison of network complexity of our approaches and baseline model. Train- 

ing time is calculated over the entire training set for 20 epochs. Inference time is 

calculated over a single iteration, where h, m, s are hour, minute, and second. 

Methods 

MSCOCO Flickr30k 

Training time Inference time Training time Inference time 

Baseline 20 h 10 m 10.60 s 4 h 25 m 10.64 s 

M � 20 h 31 m 10.58 s 4 h 30 m 10.60 s 

M � 20 h 31 m 10.45 s 4 h 30 m 10.44 s 
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.6. Network complexity 

Our approach with the key and signature embedding in the im- 

ge captioning model does not cause the extra cost. We conducted 

n experiment to compare the training and inference time between 

aseline, M � and M �. All the experiments used TITAN V GPU with 

he same setting and hyperparameter as stated in Section 4 . On 

oth Flickr30k and MS-COCO datasets, the complexity of our ap- 

roach (with the key and signature embedded) compared to the 

aseline model is almost negligible. Herein, we show the complete 

esults in Table 6 to compare the training time and inference time. 

t is noticed that our approaches only have an incremental of 1.89% 

r below in the training time on Flickr30k and MS-COCO datasets. 

or the inference time, it is almost similar to the baseline model 

or a single iteration. As a summary, we show that our proposed 
9 
odel provides reliable, preventive, and timely IP protection at vir- 

ually no extra cost for image captioning tasks. 

.7. Comparison with different types of image captioning frameworks 

Despite showing our approach in the popular image caption- 

ng framework Show, Attend and Tell model [9] . We further applied 

ur approach in the different types of image captioning frame- 

orks, which are Up-Down [12] and SCST [14] . Up-Down model 

sed the bottom-up attention techniques to find the most relevant 

egions based on bounding boxes and two LSTM layers are used 

o selectively attend to the image features to generate the caption. 

hile SCST model applied the reinforcement learning method to 

mage captioning by optimizing the model directly on those objec- 

ive evaluation metrics like CIDEr score. Both Up-Down and SCST 
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Fig. 9. Removal attack (Pruning): CIDEr-D score and signature detection rate of our approaches on both MS-COCO and Flickr30k datasets against different pruning rates. 

Fig. 10. Comparison of captions generated from (a) Baseline, (b) M � , (c) M � with 60% pruning rate. The first row is the images from Flickr30k dataset. The second row is 

the images from MS-COCO dataset. 

10 
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Fig. 11. Removal attack (Key Pruning): CIDEr-D score and signature detection rate of our approaches on both MS-COCO and Flickr30k datasets against different key pruning 

rates. 
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Table 7 

Comparison between our approach (UD- M �) with Up-Down [12] model on 

MS-COCO dataset, across 5 common metrics where B-N, M, R, C and S are 

BLEU-N, METEOR, ROUGE-L, CIDEr-D and SPICE scores. UD- ̂  M � is similar to 

UD- M � but with the forged secret key. 

Methods 

Evaluation metric 

B-1 B-4 M R C S 

Up-Down [12] 76.97 36.03 26.67 56.03 111.13 19.90 

UD- M � 71.57 33.83 25.33 52.43 101.93 18.60 

UD- ̂  M � 65.20 29.50 20.33 48.60 84.33 16.53 
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re having different frameworks compared to our baseline. There- 

ore, we need to adapt our proposed key embedding approach to 

he frameworks. 

Up-Down model consists of two LSTM layers, the first LSTM 

ayer as a top-down visual attention model and the second LSTM 

ayer as a language model. It has an attention module in between 

he first and second LSTM layers. We apply our proposed key 

mbedding approach in the second LSTM layer and the attention 

odule. The key embedding process is defined as: 

 

2 
t−1 = C · (h 

2 
t−1 � K) + (1 − C) · (h 

2 
t−1 ) (9) 

ˆ 
 t = C · ( ̂ v t ) + (1 − C) · ( ̂ v t � K) (10) 

here h 2 
t−1 

is the previous hidden state of the second LSTM layer, 

ˆ 
 t is the attended image features and C ∈ { 0 , 1 } , 0 indicates forged

ey, 1 indicates real key. 

SCST model modified the architecture of the attention model 

or captioning given in Xu et al. [9] , and input the attention- 

erived image feature only to the cell node of the LSTM. We ap- 

ly our proposed key embedding approach in the attention-derived 

mage feature and the hidden state. The key embedding process is 

efined as: 

 t−1 = C · (h t−1 � K) + (1 − C) · (h t−1 ) (11) 

 t = C · (I t ) + (1 − C) · (I t � K) (12) 

here h t−1 is the previous hidden state of the LSTM layer, I t is the

ttention-derived image feature. 
11 
Table 7 shows the performance of our approach with the Up- 

own model on MS-COCO dataset in all 5 image captioning met- 

ics. UD- M � refers to our proposed key embedding approach in the 

p-Down model. While UD- ̂  M � is similar to UD- M � but with the 

orged secret key. We can observe that UD- M � is having a lower 

core compared to the original Up-Down model. With the forged 

ecret key, the performance of the model degrades significantly 

hich showing our approach can protect the Up-Down captioning 

odel. For example, the CIDEr-D score drops 17.27% from 101.93 to 

4.33. 

According to Table 8 , it shows the performance of our approach 

ith the SCST model on MS-COCO dataset. We follow the experi- 

ent in the original paper [14] to evaluate the model in 4 image 

aptioning metrics: BLEU-4, METEOR, ROUGE-L, and CIDEr-D. SCST- 

 � refers to our proposed key embedding approach in the SCST 

odel. While SCST- ̂  M � is similar to SCST- M � but with the forged 
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Table 8 

Comparison between our approach (SCST- M �) with 

SCST [14] model on MS-COCO dataset. SCST- ̂  M � is 

similar to SCST- M � but with the forged secret key. 

Methods 

Evaluation metric 

B-4 M R C 

SCST [14] 33.87 26.27 55.23 111.33 

SCST- M � 31.60 24.97 52.43 101.87 

SCST- ̂  M � 29.83 22.63 50.17 90.53 
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ecret key. Our proposed key embedding approach SCST- M � does 

erform poorly compared to the original SCST model but is able to 

rotect the model against the forged secret key. With the forged 

ecret key, the CIDEr-D score drops from 101.87 to 90.53. 

. Limitations 

We show that our proposed secret key together with signature 

an protect the model against unauthorized usage as simulated in 

ection 4 . However, the embedding-based methods have some lim- 

tations that are inevitable. For example, the secret key can be re- 

oved and the signature detection rate is dropped in the worst- 

ase scenario in which the attacker knows everything about the 

odel as shown in Section 4.5.4 . This hinders open-sourcing the 

odel as we need to prevent others from knowing the secret key, 

he training procedure, and the exact training parameters. 

. Conclusion 

IP protection on DNN has been a significant research area and 

e take the first step to implement the ownership protection on 

he image captioning task. The protection is achieved in two dif- 

erent embedding schemes, using the hidden memory state of RNN 

o that the image captioning functionalities are paralyzed for unau- 

horized usage. We demonstrated with extensive experiments that 

ur proposed, on the one hand, the image captioning functional- 

ties are well-preserved in the presence of valid secret key and 

ell-protected for unauthorized usages on the other hand. The 

roposed key-based protection is, therefore, more cost-effective, 

roactive, and timely, as compared with watermarking-based pro- 

ections which have to rely on government investigation and ju- 

idical enforcing actions. However, the proposed key-based protec- 

ion also has some weaknesses, where the overall protection will 

e compromised when the attacker knows everything about the 

odel. This is the direction in our future work to solve these weak- 

esses and ensure the model can be fully protected against differ- 

nt types of attackers. 

.1. Broader impact 

Our work is mainly focused on protecting the image caption- 

ng model with ownership verification. The engineer or researcher 

f the image captioning model might benefit from this research to 

rotect their model against IP infringement. This is crucial as the 

evelopment and training of an image captioning model is expen- 

ive especially when it involves a very large dataset. IP protection 

n image captioning is critical to fostering innovation in this field to 

chieve top-level performance that can benefit the society. We be- 

ieve that no one in genuine may be put at disadvantage from this 

ork. In case of the failure of our work in protecting the model, 

he worst scenario is an attacker can access the model without 

wner acknowledgement. In short, our work is bringing benefit to 

he society especially to AI start-ups to secure their advantage in 

he open market. We will also make the source code of this work 

ublicly available for people to reproduce and follow up. 
12 
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