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a b s t r a c t 

With the advancement of deep models, research work on image captioning has led to a remarkable gain 

in raw performance over the last decade, along with increasing model complexity and computational 

cost. However, surprisingly works on compression of deep networks for image captioning task has re- 

ceived little to no attention. For the first time in image captioning research, we provide an extensive 

comparison of various unstructured weight pruning methods on three different popular image captioning 

architectures, namely Soft-Attention, Up-Down and Object Relation Transformer . Following this, we propose 

a novel end-to-end weight pruning method that performs gradual sparsification based on weight sensi- 

tivity to the training loss. The pruning schemes are then extended with encoder pruning, where we show 

that conducting both decoder pruning and training simultaneously prior to the encoder pruning provides 

good overall performance. Empirically, we show that an 80% to 95% sparse network (up to 75% reduction 

in model size) can either match or outperform its dense counterpart. The code and pre-trained models 

for Up-Down and Object Relation Transformer that are capable of achieving CIDEr scores > 120 on the MS- 

COCO dataset but with only 8.7 MB and 14.5 MB in model size (size reduction of 96% and 94% respectively 

against dense versions) are publicly available at https://github.com/jiahuei/sparse- image- captioning . 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the past decade, continuous research on image caption- 

ng using deep neural networks (DNNs) has led to a steady im- 

rovement in the overall model performance. For instance, CIDEr 1 

cores [1] of state-of-the-art (SOTA) models have doubled from 66 

oints [2] to 130 points and beyond [3,4] recently on the MS-COCO 

ataset [5] . However, such gains are usually achieved at the ex- 

ense of model size using heavily parameterised models, where 

he decoder size had quadrupled from 12 million [6] to 55 million 

3] parameters (see Table 3 for details). 

In an effort to reduce model size, various pruning techniques 

ave been proposed to remove unimportant weights from a net- 

ork. Generally, there are multitudes of benefits to be gained 

rom weight pruning: it provides opportunities for improvements 

n terms of i) speed , ii) storage , and iii) energy consumption , es-
∗ Corresponding author. 

E-mail addresses: tanjiahuei@siswa.um.edu.my (J.H. Tan), cs.chan@um.edu.my 

C.S. Chan), jhchuah@um.edu.my (J.H. Chuah). 
1 Consensus-based Image Description Evaluation (CIDEr) is a widely-used metric 

or caption quality by measuring the level of consensus between generated captions 

nd ground-truth captions. 
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ecially during the deployment stage. For speed , highly-sparse 

odels with significantly fewer non-zero parameters can enjoy 

aster run-times when combined with efficient SpMM kernels [7,8] . 

his is particularly true for Recurrent Neural Network (RNN) and 

ransformer whose matrix-multiplication computations are bottle- 

ecked by bandwidth [9] . For storage , compressed models are eas- 

er to be deployed onto mobile devices. Moreover, compressing 

OTA model checkpoints into tens of MB can potentially accelerate 

he dissemination of research findings, result reproduction and ex- 

erimentation. Finally, for energy consumption , small RNN kernels 

roduced via pruning can be stored in on-chip SRAM cache with 

ower energy requirements rather than DRAM memory [10] , reduc- 

ng carbon footprint. 

While there is no shortage of pruning methods for image 

lassification and translation tasks [11–14] (see Sec. 2 for more), 

heir applicability to multimodal contexts such as image caption- 

ng is still under-explored. To the best of our knowledge, there 

s only one prior work that involved pruning an image caption- 

ng model, and that is by Dai et al. [15] . We hypothesise that 

his lack of progress is due to several difficulties. Firstly, weights 

re shared and reused across time steps, complicating variational 

runing methods proposed for feed-forward networks [12] . Sec- 

ndly, naively performing structured pruning on Long-Short Term 

https://doi.org/10.1016/j.patcog.2021.108366
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108366&domain=pdf
https://github.com/jiahuei/sparse-image-captioning
mailto:tanjiahuei@siswa.um.edu.my
mailto:cs.chan@um.edu.my
mailto:jhchuah@um.edu.my
https://doi.org/10.1016/j.patcog.2021.108366
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Table 1 

Caption statistics on MS-COCO test set. 

Approaches Sparsity (%) Caption stats. 

Unique (%) Av. len. 

SA LSTM Dense - 42.1 9.09 

SMP 80.0 42.5 9.11 

97.5 44.4 8.99 

SA GRU Dense - 42.4 9.15 

SMP 80.0 43.1 9.13 

97.5 42.0 8.94 

UD Dense - 53.0 9.46 

SMP 95.0 58.6 9.46 

99.1 61.7 9.30 

ORT Dense - 61.2 9.52 

SMP 95.0 62.4 9.46 

99.1 61.1 9.28 
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2 https://github.com/jiahuei/sparse- image- captioning 
3 https://developer.nvidia.com/blog/nvidia- ampere- architecture- in- depth 
4 https://github.com/huggingface/pytorch _ block _ sparse 
emory (LSTM) kernels can lead to invalid units due to incon- 

istent dimensions [16] . Thirdly, whereas small CIFAR datasets al- 

ow quick experimentation and iteration for Convolutional Neural 

etwork (CNN) pruning [13,17] , there is a lack of an equivalent 

ataset in image captioning. Finally, image captioning is an inher- 

ntly complex multimodal task; thus any proposed method must 

e able to perform well on both image and language domains. 

To this end, this paper attempts to answer the following ques- 

ions: 

1) Which weight pruning method produces the best results on im- 

age captioning models? 

2) Is there an ideal sparsity where a sparse model can match or 

even outperform its dense counterpart? 

3) What is the ideal prune-finetune sequence for pruning both the 

pre-trained encoder and decoder? 

4) Can a sparse captioning model outperform a smaller but dense 

model? 

ith an extensive comparison of various unstructured weight 

runing methods on three different SOTA image captioning archi- 

ectures, namely Soft-Attention (SA) [6] , Up-Down (UD) [18] and Ob- 

ect Relation Transformer (ORT) [3] . Following this, we propose a 

ovel end-to-end weight pruning method that performs gradual 

parsification while maintaining the overall model performance. 

he pruning schemes are then extended with encoder pruning, 

here several prune-finetune sequences are explored. Empirically, 

e show that conducting both decoder pruning and training simul- 

aneously prior to the encoder pruning-and-finetuning provides 

etter raw performance. Also, we show that for a given perfor- 

ance level, a large-sparse LSTM captioning model is better than 

 small-dense one in terms of model costs. 

As a summary, the core contributions of this paper are three- 

old. Firstly, this is the first extensive attempt at exploring un- 

tructured model pruning for image captioning task. Empirically, 

e show that 80% to 95% sparse networks can either match or 

ven slightly outperform their dense counterparts ( Sec. 5.2 ). In ad- 

ition, we propose a pruning method – Supermask Pruning (SMP) 

hat performs continuous and gradual sparsification during training 

tage based on parameter sensitivity in an end-to-end fashion. Sec- 

ndly, we investigate an ideal way to combine pruning with fine- 

uning of pre-trained CNN, and show that both decoder pruning 

nd training should be done before pruning the encoder ( Sec. 5.4 ). 

inally, we release the pre-trained sparse models for UD and ORT 

hat are capable of achieving CIDEr scores > 120 on the MS-COCO 

ataset; yet are only 8.7 MB (reduction of 96% compared to dense 

D) and 14.5 MB (reduction of 94% compared to dense ORT) in 
2 
odel size ( Fig. 1 and Sec. 5.3 ). Our code and pre-trained models 

re publicly available 2 . 

. Related Works 

.1. Image Captioning 

Since the advent of deep neural networks, research on image 

aptioning can be characterised by numerous architectural innova- 

ions in pursuit of raw performance (see [19] for a complete sur- 

ey). The first major innovation came in the form of an end-to-end 

aptioning network that directly generates a caption given an im- 

ge [2,20] . Next came visual attention, in which one or more CNN 

eature maps were used to guide and condition the caption gener- 

tion process [6,21] . There are also numerous works that used at- 

ributes as a way to directly inject salient information into the de- 

oder [22–24] . Following that, [18] employed an object detector to 

enerate image features as a form of hard-attention; which along 

ith Transformer, became a popular captioning paradigm [3,4,25] . 

oncurrently, substantial effort has been put into reinforcement 

earning which allowed non-differentiable caption metrics to be 

sed as optimisation objectives [26,27] . While these methods have 

een successful in advancing the SOTA performance, minimal ef- 

ort has been made on reducing model cost [28,29] , which is the 

ain motivation of this work. 

.2. Structured or Channel Pruning 

Structured pruning is a coarse-grain pruning technique whereby 

ntire rows, columns or channels of fully connected or convolu- 

ional weights are removed. There are extensive prior work in this 

irection targeted at feed-forward CNNs, including [30–34] just to 

ame a few. At the same time, structured pruning of RNNs is also 

idely explored [16,35,36] . 

Since structured pruning reduces model dimensions, the result- 

ng network is more amenable to run-time speed-up. However, 

his advantage comes with several costs: (a) Architectural con- 

traints: For gated RNNs such as LSTM, structured pruning requires 

hat the pruned rows and columns of the recurrent weight ker- 

els be aligned with each other; otherwise it may lead to invalid 

nits [16] . The same is true for attention kernels, which is exten- 

ively used in modern captioning architectures. (b) Lower spar- 

ity: Structured pruning usually provides lower sparsity for a given 

erformance loss [37,38] , often in the range of 40% (1.7 ×) to 90% 

10 ×). In contrast, we demonstrate that unstructured pruning can 

rune an order of magnitude more at 99% (100 ×) while maintain- 

ng performance (see Fig. 4 ). 

.3. Unstructured Pruning 

Recently, unstructured pruning has enjoyed emerging sup- 

ort, including Fast SpMM kernels [7–9] and block-sparsity sup- 

ort by NVIDIA Ampere GPU 

3 and HuggingFace Transformers li- 

rary 4 . While there exist numerous unstructured pruning methods 

12,13,39] , we focus on methods applied to RNN and NLP models 

ith the following characteristics: (a) Straightforward: Reasonably 

imple to implement and integrate into a standard deep network 

raining workflow. (b) Effective: Able to prune at least 80% of pa- 

ameters without compromising performance. (c) Efficient: Does 

ot require expensive iterative pruning and retraining cycles. Thus, 

e arrive at the following pruning methods as a solid starting 

oint for exploring image captioning model pruning: 

https://github.com/jiahuei/sparse-image-captioning
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth
https://github.com/huggingface/pytorch_block_sparse
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Fig. 1. Our proposed Supermask Pruning (SMP) method can produce 99.1% sparse networks that are capable of achieving CIDEr scores of 120 and above on the MS-COCO 

dataset, see Table 3 . 
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Table 2 

Comparison with H-LSTM [15,44] . Both encoder and decoder of the 

SMP models are pruned. 

Approaches RNN (K) MS-COCO test scores 

NNZ FLOP B-1 B-4 C S 

SMP (80%) 562 1128 73.9 33.4 102.5 18.8 

H-LSTM + GP 394 670 71.9 - 95.4 - 

SMP (90%) 270 545 72.9 32.8 99.0 18.3 

H-LSTM + GP 163 277 71.4 - 93.3 - 

SMP (95%) 116 236 72.0 31.7 94.7 17.5 
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(1) Hard / one-shot magnitude-based pruning: [40] first in- 

estigated three magnitude-based schemes for translation model 

ith multi-layer LSTM, namely class-blind, class-uniform and 

lass-distribution. Class-blind removes parameters with the small- 

st absolute value regardless of weight class. In contrast, class- 

niform prunes every layer to the same sparsity level. Class- 

istribution [10] prunes parameters smaller than a global factor of 

he class standard deviation. Experiments found that class-blind 

roduced the best results. 

(2) Gradual magnitude-based pruning: First introduced by 

41] to prune parameters gradually over the course of training, it 

as extended by [11] via a simplified pruning curve with reduced 

yperparameters. The simplified slope has a single phase, governed 

y a cubic function that determines the sparsity level at each train- 

ng step. Their method is tested on deep CNN, stacked LSTM and 

NMT models on classification, language modelling and transla- 

ion. 

(3) SNIP: [14] proposed a saliency criterion for identifying 

tructurally important connections. The criterion is computed as 

he absolute magnitude of the derivative of training loss with re- 

pect to a set of multiplicative pruning masks. Guided by the 

aliency criterion, single-shot pruning of CNN and RNN were per- 

ormed at initialisation, prior to training. It is evaluated on the task 

f image classification. 

(4) Lottery ticket (LT): It is a seminal work by [17] which put 

orth “The Lottery Ticket Hypothesis”. It states that there exists a 

ubnetwork in a randomly initialised dense neural network, such 

hat when trained in isolation can match the test accuracy of the 

riginal network. By iteratively pruning and resetting networks to 

heir original initialisation values, the authors found sparse net- 

orks that can reach the original dense accuracy within equal or 

horter training iterations. It is tested on CNNs for image classifi- 

ation. 
T

3 
(5) Supermask: The work by [42] explored various aspects of 

ottery Tickets in order to determine the reason behind its success. 

n the process, the authors discovered that binary pruning masks 

an be learned in an end-to-end fashion. However as formulated, 

nly the masks were optimised, and there is no straightforward 

ay to control network sparsity. Another work by [43] optimised 

oth masks and weights of CNNs, yet similarly, its final sparsity 

s influenced indirectly via a set of regularisation hyperparame- 

ers. In this work, we extend Supermask with a novel sparsity loss 

 Eq. (6) ) to directly control the final sparsity of the network. 

Among the prior works on model pruning, only the work by Dai 

t al. [15] involved image captioning. However, there exists several 

ifferences with our work: (a) only the H-LSTM cell is pruned; 

b) CNN weight pruning is not investigated; (c) grow-and-prune 

GP) method [44] used requires expensive and time-consuming 

grow” and “prune-retrain” cycles. In contrast, our approach prunes 

oth encoder and decoder in-parallel with regular training. Nev- 

rtheless, we provide a performance comparison with H-LSTM in 

able 2 . 
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Table 3 

Single-model comparison with captioning SOTA. NNZ and model size calculations exclude CNN. 

Approaches NNZ (M) Model size(MB) MS-COCO test scores 

B-1 B-4 M C S 

DeepVS [2] - - 62.5 23.0 19.5 66.0 - 

SA [6] 11.9 1 a 70.1 a 70.7 24.3 23.9 - - 

ALT-ALTM [48] - - 75.1 35.5 27.4 110.7 20.3 

ARL [49] - - 75.9 35.8 27.8 111.3 - 

Att2all [26] 46.3 a 185.3 a - 34.2 26.7 114.0 - 

UD [18] 53.2 a 212.6 a 79.8 36.3 27.7 120.1 21.4 

ORT [3] 55.4 a 232.2 a 80.5 38.6 28.7 128.3 22.6 

M2 [4] - - 80.8 39.1 29.2 131.2 22.6 

UD (95.0%) 2.7 53.3 79.7 38.5 27.9 124.9 20.9 

(99.1%, float16) 0.5 8.7 b 78.9 37.2 27.3 120.1 20.0 

ORT (95.0%) 2.9 66.2 80.5 39.1 28.5 129.4 21.6 

(99.1%, float16) 0.6 14.5 b 79.4 37.6 27.8 124.3 20.9 

a Based on reimplementation, size in float32. 
b Size in float32: 9.7 MB (UD), 20.8 MB (ORT). 
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. Supermask Revisited 

Supermask [42] is a network training method proposed by Zhou 

t al. as part of their work on studying the Lottery Tickets phe- 

omenon [17] . Their work aimed to uncover the critical elements 

hat contributed towards the good performance of “winning tick- 

ts”: sparse networks that emerged from iterative prune-reset cy- 

les. In the process, the authors discovered that an untrained, ran- 

omly initialised network could attain test performance that is sig- 

ificantly better than chance. This is achieved by applying a set 

f well-chosen masks to the network weights, effectively pruning 

t. These masks were hence named “Supermask”, in that they are 

ble to boost performance even without training of the underlying 

eights. 

.1. Learning Supermasks 

Supermasks are learned in an end-to-end fashion via stochastic 

radient descent (SGD). For every weight matrix W to be pruned, 

 gating matrix G with the same shape as W is created. This gating

atrix G operates as a masking mechanism that determines which 

f the parameter w ∈ W will be involved in both the forward- 

xecution and back-propagation of the graph. For a model with 

 layers, we now have two sets of parameters: gating parameters 

= { G 1: R } and network parameters θ = { W 1: R , B 1: R } . To this end,

he effective weight tensor W 

′ is computed following Eq. (1) : 

 

′ = W � G 

b (1) 

here W, G ∈ R 

D are the original weight and gating matrices with 

hape D ; and superscript ( ·) b indicates binary variables. � is 

lement-wise multiplication. 

In order to achieve the desired masking effect, G 

b must con- 

ain only “hard” binary values, i.e. G 

b ∈ { 0 , 1 } D . Therefore, matrix

 containing continuous values is transformed into binary matrix 

 

b using a composite function z ( σ ( ·) ) . Here, σ (·) is a point-wise 

unction that squeezes continuous values into the interval (0 , 1) ; 

hereas z(·) is another point-wise function that samples from the 

utput of σ (·) . This is shown in Eq. (2) : 

 

b = z ( σ ( G ) ) (2) 

Sampling from σ ( G ) is done by treating σ ( G ) as Bernoulli ran- 

om variables, and then performing an “unbiased draw”. Unbiased 

raw is the sampling process where each gating value g ∈ [0 , 1]

s binarised to 1 with probability g and 0 otherwise, i.e. z(·) = 

ern (·) . Sigmoid function is employed as σ (·) . Finally, the effec- 

ive weight W 

′ can be computed as follows by modifying Eq. (1) : 

 

′ = W � Bern (σ (G )) (3) 
4 
Before training, all the gating variables φ = { G 1: R } are initialised 

ith the same constant value m , whereas the weights of the net- 

ork are initialised randomly. The authors found that the utilisa- 

ion of Bern (·) helped to mitigate the bias arising from the con- 

tant value initialisation by injecting stochasticity into the training 

rocess. 

Although Supermask is an effective pruning technique, the for- 

ulation as presented does not allow for easy control of final net- 

ork sparsity. Instead, the pruning ratios were indirectly controlled 

ia the pruning mask initialisation magnitude. In order to address 

his limitation, we proposed Supermask Pruning (SMP) method 

hat is explained next. 

. Supermask Pruning (SMP) 

In this paper, we propose a simple yet effective method to di- 

ectly control the final weight sparsity of models pruned based on 

he Supermask framework. To achieve this, a novel sparsity loss L s 
s formulated which allows one to drive the sparsity level of gating 

ariables φ to a user-specified level s target . We name our method 

upermask Pruning (SMP), and an overview is illustrated in Fig. 2 . 

he complete algorithm is given in Algorithm 1 . 

.1. Sparsity Loss 

Technically, a straightforward way to influence the sparsity and 

runing rate of Supermask is to introduce an L 1 regularisation term 

s follows: 

 s = | ∗ | s target −
(

1 − p nnz 

p total 

)
(4) 

here p nnz is the number of non-zero (NNZ) gating parameters; 

p total is the total number of gating parameters; n and n max are the 

urrent and final training step respectively. Such a regularisation 

erm as formulated in Eq. (4) would apply a downward pressure 

n the magnitude of the gating parameters G over the course of 

raining, so that by the end of training, most of the gating pa- 

ameters would have magnitudes smaller than zero. Ideally, these 

egative-valued gating parameters would represent weights that 

re least important, and can thus be removed without significant 

erformance impact. At the same time, smaller gating magnitudes 

ill cause more weights to be dropped more frequently, which in 

urn would allow the network to learn to depend on fewer param- 

ters. 

However, while naively applying the regularisation term 

 Eq. (4) ) can produce networks with the desired sparsities, it 

oes not achieve optimal performance. Our preliminary experi- 

ents found that constant application of L s causes weights to be 
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Fig. 2. An overview of our proposed Supermask Pruning (SMP). During the training stage, each weight is probabilistically retained via Bernoulli sampling on the gating 

parameters which are sparsified via a sparsity loss. Upon training completion, all weights are sparsified by multiplying with binarised gating parameters. 

Algorithm 1: Supermask Pruning (SMP) 

Require : Model parameters θ = { W 1: R , B 1: R } , gating 

parameters φ = { G 1: R } , sparsity target s target , 

maximum training step n max , optimizer η, training 

data D , loss function L 

Output : Final model parameters θ f = { W 

f , B f } 
θ ← ModelSpecificInitializer; ⇒ Initialise model parameters 

φ ← m ; ⇒ Initialise gating parameters with constant m 

for n ∈ { 0 , 1 , . . . , n max } do 

(I n , C n ) ∼ D ; ⇒ Sample a mini-batch of training data 

W 

′ ← W � Bern ( σ ( G ) ) ; ⇒ Sample effective weights, refer 

Eq. (3) 

α ← 1 − 1 
2 

(
1 + cos 

(
nπ

n max 

))
; ⇒ Sparsity loss annealing, 

refer Eq. (5) 

p nnz ← ‖ Round ( σ ( φ) ) ‖ 1 ; ⇒ Compute NNZ, refer Eq. (7) 

L s ← α | ∗ | s target −
(

1 − p nnz 
p total 

)
; ⇒ Sparsity loss, refer Eq. 

(6) 

L ← L c 
(
I n , C n ;W 

′ , B 
)

+ λs L s ; ⇒ Final loss, refer Eq. (9) 

θ ← θ − η( ∂ 
∂θ

(L )) ; ⇒ Update model parameters 

φ ← φ − η( ∂ 
∂φ

(L )) ; ⇒ Update gating parameters 

end 

W 

f ← W � Round(σ (G )) ; ⇒ Compute final weights, refer Eq. 

(10) 

B f ← B ; 

Discard φ; ⇒ Gating parameters can be discarded 
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ropped too early in the training process. In other words, it leads 

o an over-aggressive pruning schedule. To mitigate this, we pro- 

ose to perform loss annealing by adding a variable weight α to 

he L s term in the cost function. 

Our idea is at the beginning of training, the value of α is set 

o zero to allow network learning to progress without any pruning 

eing done. As training progresses, the value of α is gradually in- 

reased, forcing the model towards a sparse solution. Specifically, 

his loss annealing is done using an inverted cosine curve. Our ex- 

eriments found that such gradual weight pruning produces better 

esults, which is consistent with the observations in [11,41] . Thus, 
5 
ur final sparsity loss L s is given as: 

= 1 − 1 

2 

(
1 + cos 

(
nπ

n max 

))
(5) 

 s = α | ∗ | s target −
(

1 − p nnz 

p total 

)
(6) 

Note that to compute p nnz , it is necessary to sample from the 

ating parameters. However, instead of using Bern (·) as the sam- 

ling function, we perform a “maximum-likelihood (ML) draw”

43] to sample from σ (G ) in order to ensure determinism when 

alculating the sparsity. ML draw involves thresholding each value 

at 0.5, i.e. z(·) = Round(·) . For a model with R layers and gat- 

ng variables φ = { G 1: R } , this p nnz computation takes the following 

orm: 

p nnz = ‖ Round ( σ ( φ) ) ‖ 

1 (7) 

As both the sampling functions Bern (·) and Round(·) are non- 

ifferentiable, gradient back-prop has to be performed via an esti- 

ator. On this front, [45] had explored several gradient estimators 

or stochastic neurons, and the straight-through estimator (STE) is 

ound to be simple yet performant. Hence, back-prop is calculated 

y treating both sampling functions as identity functions, such that 

he gradients are estimated as δz ( σ ( g ) ) /δσ ( g ) = 1 such that: 

δL 

δσ ( g ) 
= 

δL 

δz ( σ (g ) ) 
(8) 

Finally given an image I and caption C, the overall cost function 

or training the image captioning model θ with gating variables φ
s a weighted combination of captioning loss L c and sparsity loss 

 s : 

 ( I, C, s target ) = L c + λs L s (9) 

Intuitively, it can be seen that the captioning loss term L c is 

roviding a supervised way to learn the saliency of each parameter 

here important parameters are retained with higher probability 

hereas unimportant ones are dropped more frequently. On the 

ther hand, the sparsity regularisation term L s pushes down the 

verage value of the gating parameters so that most of them have a 

alue of less than 0.5 after sigmoid activation. The hyperparameter 

s determines the weightage of L s . If λs is set too low, the target 

parsity level might not be attained (see Sec. 5.7 ). Visualisations of 

he training progression are given in Sec. 5.6 . 
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.2. Inference 

After model training is completed, all the weight matrices W 

re transformed into sparse matrices via element-wise multiplica- 

ion with G 

b . This can be done by sampling from G using Round(·) ,
fter which G can be discarded. In other words, the final weights 

 

f are calculated as: 

 

f = W � Round ( σ ( G ) ) (10) 

The final sparse network can then be stored in appropriate 

parse matrix formats such as Coordinate List (COO) or Com- 

ressed Sparse Row (CSR) in order to realise compression in terms 

f storage size. This can be done easily using PyTorch, as it sup- 

orts parameter saving in COO format (as of release 1.6). Alterna- 

ively, regular compression algorithms such as gzip can be used to 

ompress the model. 

. Experiments 

In this section, we first present the setup of our experiments, 

ollowed by the results obtained from over 6,0 0 0 GPU hours using 

 Titan X GPUs. 

.1. Experiment Setup 

Architectures: Three different popular image captioning archi- 

ectures are used in this work: Soft-Attention (SA) [6] , Up-Down 

UD) [18] and Object Relation Transformer (ORT) [3] . SA consists of 

nception-V1 [46] , and a single layer LSTM or GRU with single-head 

ttention function. Other details such as context size, attention size 

nd image augmentation follow [29] . For UD and ORT, we reuse 

he public implementations 5 6 . 

Hyperparameters: For all training, we utilise Adam [47] as the 

ptimiser, with an epsilon of 1 × 10 −2 for SA and UD. The SA mod-

ls were trained for 30 epochs, whereas UD and ORT models were 

rained for 15 epochs. Cosine LR schedule was used for SA and UD, 

hereas ORT follows [3] . Following [41] and [10] , lower dropout 

ates are used for sparse networks to account for their reduced ca- 

acity. The rest follows [29] . 

For Supermask Pruning (SMP), training of the gating variables 

is done with a higher constant learning rate (LR) of 100 without 

nnealing. This requirement of a higher LR is also noted in [42] . All

are initialised to a constant m = 5 . 0 . 

The other pruning methods are trained as follows. Hard: Prun- 

ng is applied after decoder training is completed. It is then re- 

rained for 10 epochs. Gradual: Pruning begins after the first epoch 

s completed and ends at half of the total epochs, following the 

euristics outlined in [41] . Pruning frequency is 10 0 0. We use 

he standard scheme where each layer is uniformly pruned. SNIP: 

runing is done at initialisation using one batch of data. Imple- 

entation is based on the authors’ code 7 . Lottery Ticket: Win- 

ing tickets are produced using hard-blind, hard-uniform and grad- 

al pruning. For a fair comparison with other single-shot pruning 

ethods, we follow the one-shot protocol instead of the iterative 

rotocol. 

Inference is performed using beam search without length nor- 

alisation. 

Datasets: Experiments are performed on MS-COCO [5] which 

s a public English captioning dataset. Following prior captioning 

orks, we utilise the “Karpathy” split [2] , which assigns 5,0 0 0 im- 

ges for validation, 5,0 0 0 for testing and the rest for training. Pre- 

rocessing of captions is done following [29] . 
5 https://github.com/ruotianluo/self-critical.pytorch/tree/3.2 
6 https://github.com/yahoo/object _ relation _ transformer 
7 https://github.com/namhoonlee/snip-public 

f

a

6 
Metrics: Evaluation scores are obtained using the publicly avail- 

ble MS-COCO evaluation toolkit 8 , which computes BLEU, METEOR, 

OUGE-L, CIDEr and SPICE (B, M, R, C, S). 

.2. Pruning Image Captioning Models 

In this section, we attempt to answer Questions (1) and (2) 

n Sec. 1 via extensive performance comparisons of the pruning 

ethods at multiple sparsity levels. We first present the pruning 

esults on SA in Fig. 3 , followed by UD and ORT in Fig. 4 . Pruning

s applied to all learnable parameters except for normalisation lay- 

rs and biases. All the results herein were obtained using teacher- 

orcing with cross-entropy loss. 

Which pruning method produces the best results? Our proposed 

nd-to-end Supermask Pruning (SMP) method provides a good per- 

ormance relative to the dense baselines. This observation is valid 

ven at high pruning ratios of 95% and above. In particular, the 

elative drops in CIDEr scores for UD and ORT are only marginal 

 −3 . 1% to −4 . 7% ) even at a 111 × pruning rate. This is in contrast

ith competing methods whose performance drops are either dou- 

le or even triple compared to ours, especially on SA and UD. To 

urther support this observation, we compute the uniqueness and 

ength of captions produced by our sparse SMP models. Results in 

able 1 shows that they are largely unaffected by the pruning rate. 

Among the competing methods, gradual pruning generally out- 

erforms hard pruning, especially at higher sparsity levels when 

NZ falls to 0.6 M and below. On the other hand, the results of LTs

ndicates that model resetting in a one-shot scenario does not out- 

erform direct application of the underlying pruning method. We 

ote that better results have been reported using iterative prune- 

eset-train cycles, however that would lead to excessively long 

raining times and unfair comparisons with other pruning meth- 

ds. 

Another notable result is the relatively poor performance of 

NIP when applied to image captioning. We can observe in 

ig. 3 that the performance of SNIP is acceptable at 80% sparsity 

nly. Any higher sparsity levels than this quickly led to a collapse 

n caption quality, as indicated by the metric scores. We tried ac- 

umulating the saliency criterion across 100 batches in an attempt 

o improve the result, but the improvement is limited with a huge 

ap from the baseline 9 . All in all, these results reflect the difficulty 

f pruning generative models, as well as the importance of testing 

n larger datasets. 

Is there an ideal sparsity? A broad trend that emerged from 

ig. 3 and 4 is that the model performance is more dependent on 

he remaining NNZ parameters after pruning, rather than the spar- 

ity level. Both the UD and ORT models, which are about 4 × larger 

han the SA model, can achieve substantially higher sparsity. On 

he extreme end, we were able to prune 99.1% of parameters from 

he networks, while suffering only −3 . 5 CIDEr points for UD and 

5 . 4 CIDEr points for ORT. 

In addition, there are indeed ideal sparsity levels where sparse 

odels can either match or outperform their dense counterparts. 

his occurs at an 80% sparsity for SA, and at a 95% sparsity for 

oth UD and ORT. We did not further investigate the performance 

f these models at lower sparsities, as although it is reasonable to 

xpect better performance, the model sizes also increase substan- 

ially. 

All in all, these results showcase the strength of SMP across 

runing ratios from 80% to 99.1%, while managing good perfor- 

ance relative to the dense baselines and other pruning methods. 
8 https://github.com/salaniz/pycocoevalcap 
9 To ensure there are no critical errors on our implementation, we had success- 

ully reproduced the results for LSTM-b on MNIST with a lower error rate of 1 . 281% 

veraged across 20 runs. 

https://github.com/ruotianluo/self-critical.pytorch/tree/3.2
https://github.com/yahoo/object_relation_transformer
https://github.com/namhoonlee/snip-public
https://github.com/salaniz/pycocoevalcap
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Fig. 3. Pruning performance on MS-COCO. λs is set following λs = max (5 , 0 . 5 / (1 − s target )) . Sparsity, compression and NNZ figures exclude normalisation and bias parameters. 

Fig. 4. Pruning performance on MS-COCO. Both SNIP and hard-blind methods failed to converge well. In order from 80% to 99.1% sparsity, λs is set to 80 , 80 , 80 , 120 for UD 

and 120 , 120 , 80 , 120 for ORT. Sparsity, compression and NNZ figures exclude normalisation and bias parameters. 
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.3. SOTA Comparison 

In this section, we compare models pruned using our proposed 

MP against both H-LSTM by Dai et al. [15,44] and standard cap- 

ioning SOTA approaches. 

H-LSTM comparison: In Table 2 , we provide the compression 

ate and model performance comparisons with [15] . Our SMP mod- 

ls are SA models trained and fine-tuned using teacher-forcing. As 

t can be seen, both of the SMP models at 90% and 95% sparsities

ith smaller RNN sizes outperform H-LSTM on both BLEU-4 and 

IDEr. Furthermore, SMP does not require the expensive and time- 

onsuming process of “grow-prune-retrain” cycles as required by 

44] . 

SOTA comparison: To demonstrate that sparse SMP models are 

ompetitive with standard SOTA works, we compare UD and ORT 

odels pruned using SMP against several SOTA approaches in 

able 3 . We optimised our models for BLEU-4 and CIDEr using SCST 

26] , but with the mean of rewards as baseline following [4,50] . 

parse models are saved in PyTorch COO format. For float16 mod- 

ls, weights are converted back to single-precision prior to compu- 

ation. 

From the results, it is evident that our pruned models are still 

apable of obtaining good captioning performance. In fact, our 95% 

parse UD and ORT models managed to outperform their orig- 

nal dense counterparts. This is consistent with the findings in 

ection 5.2 , which found that 95% sparsity is ideal. Finally, despite 

aving a relatively small model size of 10 MB and 21 MB, our 99.1%
 m

7 
parse models provided good results as well. The 99.1% sparse UD 

odel, in particular, is able to match the dense UD model on CIDEr 

hile outperforming it on BLEU-4. 

.4. Pruning Sequence for Encoder 

In this section, we attempt to answer Question (3), which asks: 

hat is the ideal prune-finetune sequence for the encoder ? To an- 

wer this, we devised three prune-finetune schemes for the SA 

odel as follows: 

Scheme A : Start from scratch: Train the decoder while pruning 

oth the encoder and decoder. Then, fine-tune both with gating φ
rozen (i.e. not updated). 

Scheme B : Start from a trained decoder: Fine-tune and prune 

oth the encoder and decoder. 

Scheme C : Start from a trained and pruned decoder: Fine-tune 

oth the encoder and decoder, but only prune the encoder. De- 

oder φ are left frozen. 

We paired each of the schemes with three pruning methods 

rom the previous section, namely i) class-blind hard pruning, 

i) gradual pruning and iii) SMP. All learnable parameters were 

runed except for normalisation layers and biases. For schemes 

here gating parameters φ are frozen, we still apply Bern (·) to 

ample from σ (φ) . However, we also found that there is minimal 

ifference in the final performance when Round(·) is used instead. 

cheme A is not evaluated for hard-blind as it requires a trained 

odel prior to pruning. 
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Fig. 5. Pruning performance on MS-COCO when both encoder and decoder are pruned. Sparsity, compression and NNZ figures exclude normalisation and bias parameters. 

Table 4 

Large-sparse versus small-dense models. Both encoder and decoder are pruned 

and fine-tuned. 

Approaches Cost (M) MS-COCO test scores 

NNZ FLOP B-1 B-4 M C S 

Dense-L 15.33 4376 73.2 32.6 25.0 98.0 18.1 

Sparse (80.0%) 3.08 901 72.1 31.4 24.9 95.9 17.7 

Dense-M 3.37 731 70.3 29.3 23.3 86.9 16.4 

Sparse (90.0%) 1.56 533 72.2 31.4 24.7 94.9 17.7 

Dense-S 2.67 340 67.1 26.7 21.7 76.6 14.7 

Sparse (95.0%) 0.80 307 70.0 29.2 2 3.3 86.0 16.1 

Sparse (97.5%) 0.42 195 66.6 25.8 21.3 73.1 14.3 
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From Fig. 5 , it is evident that Scheme A produces polarised re- 

ults. Specifically, it is the best when paired with SMP, yet is the 

orst with gradual and hard-blind. On the other hand, Scheme C is 

onsistently favoured over Scheme B for all three pruning methods. 

his shows that better performance can be attained when pruning 

nd training for the decoder are done in-parallel rather than sepa- 

ately. 

Comparing the three different pruning methods, we can see 

hat the trends are consistent with the results obtained for de- 

oder pruning in the previous section. Across different sparsity lev- 

ls, our SMP method produces the best performance. At 80% spar- 

ity, there is barely any performance loss relative to the baselines, 

ith a mere −0 . 1 in CIDEr score for LSTM and no difference for

RU. At the other extreme with 2.5% of parameters , we managed 

IDEr scores of 85.2 for LSTM and 85.8 for GRU, while gradual and 

ard-blind scored 70.0 and below. 

.5. Large-Sparse vs Small-Dense 

Can a sparse model outperform a smaller dense model? Towards 

hat end, empirical results are given in Table 4 . All models are 

ased on SA in Sec. 5.2 but with different CNN and LSTM sizes. 

he CNNs are MobileNet-V1: Dense-L and Sparse have a width mul- 

iplier of 1.0; Dense-M and -S have a width of 0.5 and 0.25 respec-

ively. Moreover, Dense-M and -S have a word embedding size of 

8, with an attention and LSTM size of 128. The FLOP counts are 

or generating a 9-word caption from a 224 ×224 image using a 

eam size of 3 (average caption length is 9). Sparse models are 

runed using SMP. 

Comparing models with similar metric scores, large-sparse 

odels often have smaller NNZ and FLOP counts than their dense 

ounterparts. Notably, a 95% sparse model can provide comparable 

erformance as Dense-M that is larger and heavier ( 4 . 3 × NNZ and
8 
 . 37 × FLOP). This further showcases the strength of model prun- 

ng and solidifies the observations made in works on RNN pruning 

11,41] . 

.6. Qualitative Results and Visualisations 

In this section, we present examples of captions generated, as 

ell as visualisations of training progression, final layer-wise spar- 

ities and weight distribution of sparse SMP models. 

Qualitative results: Figure 6 shows the captions produced by 

ur sparse UD and ORT models from Table 3 . From the samples, we 

an see that the overall caption quality is satisfactory with suffi- 

ient details, such as umbrellas, living room, fence and school bus. 

bject counts are largely correct except for 5th image in which a 

ird is confused for two. The last image shows captions with bad 

ndings, which is a side-effect of SCST optimisation. 

Training progression: Meanwhile in Fig. 7 , we can observe the 

ffects of cosine annealing α from Eq. (5) and the sparsity regu- 

arisation weightage λs from Eq. (9) on the final weighted sparsity 

oss term. Loss annealing allows the model to focus on learning 

seful representations to solve the captioning task during the early 

tages of training, and then move towards a sparse solution during 

he middle to late stages when the training has stabilised. Note 

hat whereas both figures show that sparsity levels only start to 

ncrease at around 25% of total training steps, the pruning process 

ctually began much earlier. The average value of gating variables 

began to decrease around 10% into training, and continued to 

rop towards −8 . 0 throughout later stages of the training process. 

e can also observe that the training loss (XE loss) remained rela- 

ively stable throughout the training and pruning process even for 

 97.5%-sparse model. 

Layer-wise sparsities: For Inception-V1 encoder (Fig. ) pruned 

sing SMP or hard-blind pruning, we can see that earlier convo- 

ution layers with fewer parameters are pruned less heavily than 

ater layers. This behaviour is consistent with findings in [7] . We 

an also see that the 3 × 3 convolution kernel of the second branch 

f each Inception module is pruned the most compared to the rest. 

For LSTM decoder (Fig. ), SMP and hard-blind pruning con- 

istently prune “QK” layer (the second layer of the 2-layer at- 

ention MLP) the least, whereas “Key” and “Query” layers were 

runed most heavily. Finally, “Embedding” consistently receives 

ore pruning than “Output” despite having fewer parameters. This 

ay indicate that there exists substantial information redundancy 

n the word embeddings matrix as noted in [29,51] . 

For MobileNet-V1 encoder (Fig. ), SMP consistently prunes 

oint-wise ( 1 × 1 ) convolution kernels significantly more than 
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Fig. 6. MS-COCO captions generated by 99.1% sparse UD (dashed blue box) and ORT (solid red box) models. 

Fig. 7. Training progression of the 97.5% sparse SA model using SMP on MS-COCO. 

“Gating average” is the average value of gating variables φ; “XE loss” refers to L c in 

Eq. (9) ; “Weighted sparsity loss” refers to λs L s in Eq. (9) ( λs = 20 ); “Sparsity loss”

refers to L s without cosine annealing in Eq. (6) . 
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Table 5 

Effects of varying initialisation value m of gating parame- 

ters φ on a 80% sparse SA model. 

m MS-COCO test scores 

B-1 B-4 M R C S 

5.0 71.6 31.4 24.6 52.8 94.4 17.5 

2.5 71.3 31.1 24.4 52.5 93.1 17.4 

0.0 71.3 30.6 24.4 52.6 92.4 17.3 

- 2.5 70.8 30.1 24.1 52.1 91.1 17.0 

- 5.0 70.5 29.5 23.6 51.8 88.0 16.5 

Table 6 

Effects of varying sparsity loss weightage λs with s target = 0 . 9 on SA model. 

λs Sparsity (%) MS-COCO test scores 

B-1 B-4 M R C S 

1.0 66.2 71.4 31.0 24.7 52.7 94.1 17.4 

2.0 83.0 71.6 31.0 24.6 52.7 93.9 17.5 

5.0 90.0 71.4 30.8 24.4 52.4 93.1 17.3 

10.0 90.0 71.1 30.6 24.4 52.5 92.7 17.3 
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epth-wise kernels. This is a desirable outcome as point-wise op- 

rations overwhelmingly dominate the computation budget of sep- 

rable convolutions both in terms of FLOP count and parameters 

7,52] . 

Weight distribution: Lastly, distributions of non-zero weights 

re visualised via kernel density estimation plots in Fig. 9 . We 

an see that the remaining weights have a bi-modal distribution 

entred around zero. Notably, there are still considerable amounts 

f small-magnitude weights after fine-tuning, even for extremely- 

parse models. 

.7. Ablation Studies 

This section investigates the impact of hyperparameters on the 

erformance of SMP. 

Table 5 shows the effect of different gating initialisation values 

 . From the results, we can establish that the best overall perfor- 

ance is achieved when m = 5 . 0 . This can be attributed to the fact

hat initialisation value of 5.0 allows model parameters θ to be 

etained with high probability at early stages of training, leading 

o better convergence. This observation is also consistent with the 

orks of [11,41] , where it is found that gradual pruning can lead to 

etter model performance. Thus, we recommend setting m = 5 . 0 . 
9 
Table 6 shows the effect of sparsity regularisation weightage 

s . This is an important hyperparameter that could affect the final 

parsity level at convergence, with higher sparsity target s target re- 

uiring larger λs . From the results, we can see that low values lead 

o insufficient sparsity. At the same time, we found that setting λs 

o a large value does not necessarily degrade its final performance, 

s λs of 80 and 120 were used for UD and ORT models in Fig. 4 . 

. Discussion 

In the formulation of SMP, the sparsity loss L s is annealed us- 

ng an inverted cosine curve α defined in Eq. (5) . This annealing 

chedule is inspired by works on gradual pruning as well as works 

n Variational Recurrent Auto-Encoder (VRAE) for text generation. 

n particular, [41] has found that gradual pruning is 7% to 9% bet- 

er than hard pruning. Our experiments that compared gradual- 

niform pruning and hard-uniform have found this to be generally 

rue, especially at high sparsity levels (see Sec. 5.2 and 5.4 ). Mean- 

hile, loss annealing is also used to train VRAE for text generation 

n the form of Kullback-Leibler (KL) annealing [53] . Specifically, the 

L regularisation term is gradually introduced during training in 

rder to shift the model from a vanilla RAE to a VRAE. In the same

pirit, SMP gradually transitions the model from dense to sparse, 

s shown in Fig. 7 . 

Another perspective on the effectiveness of gradual pruning or 

parsity annealing can be found in the notion of “Information Plas- 
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Fig. 8. Layer-wise final sparsity levels of SA model. (a) and (b) are 97.5% sparse. 

Fig. 9. Distribution of non-zero weights in models pruned using SMP. 
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icity” introduced by [54] . In the work, it is found that DNN op- 

imisation exhibits two distinct learning phases: a critical “mem- 

risation phase” during which information stored in the weights 

s measured by Fisher Information rapidly increase, followed by 

 “forgetting phase” where the amount of information contained 

radually decrease and the network is less adaptable to change. 

his suggests that an ideal pruning schedule should impose spar- 

ity constraints while the network has passed its critical learning 

hase, and at the same time still plastic enough to adapt to such 

hanges. 

Beyond this, sensitivity-based pruning is another equally impor- 

ant aspect of SMP. In SNIP [14] , weights are pruned based on the

bsolute magnitude of the derivative of training loss with respect 

o the multiplicative pruning masks. In contrast, SMP achieves this 

y updating the gating parameters according to their gradients. 
10 
his crucial difference meant that whereas SNIP removes weights 

ith the least influence on training loss regardless of sign, SMP 

ill also remove weights with negative influence (i.e. increase 

raining loss). 

Moreover, SNIP computes sensitivity at initialisation using one 

r more batches of training data. This implies that SNIP can be sen- 

itive to the choice of weight initialisation scheme, as stated in the 

aper. In contrast, SMP performs continuous and gradual sparsifi- 

ation throughout the training process, making it less sensitive to 

eight initialisation. In fact, Section 5.2 shows that SMP can be 

sed on a variety of architectures, each with its own set of initial- 

sation schemes. 

By combining these insights, we are able to realise several ben- 

fits. Firstly, SMP achieves good performance across sparsity levels 

rom 80% to 99.1% (111 × reduction in NNZ parameters). This is in 
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ontrast with competing methods [11,40] where there is a signifi- 

ant performance drop-off starting from sparsity level of 90% (see 

ec. 5.2 ). Secondly, our SMP sparsity loss allows explicit control of 

he overall pruning ratio and compression desired by simply speci- 

ying the target sparsity s target . The pruning ratio for each layer is 

lso automatically determined (see Fig. 8 ). In contrast, works like 

13,43] control sparsity levels indirectly via a set of regularisation 

yperparameters. Last but not least, SMP can be easily implemented 

n top of any model , and be integrated seamlessly into a typical train- 

ng process . Only 2 main hyperparameters needed to be tuned (gat- 

ng learning rate and λs ), instead of up to 4 as in [11,41] . Since

runing is performed in-parallel with training, we can avoid the 

omplexities and costs associated with iterative train-and-prune 

15] or reinforcement learning techniques [55] . Complexities asso- 

iated with variational pruning [12] such as the local reparameter- 

sation trick can also be avoided. 

. Conclusion and Future Work 

This paper presented empirical results on the effectiveness of 

nstructured weight pruning methods on various image caption- 

ng architectures, including RNN and Transformer architectures. 

n addition, we presented an effective end-to-end weight prun- 

ng method – Supermask Pruning – that performs continuous and 

radual sparsification based on parameter sensitivity. Subsequently, 

he pruning schemes are extended by adding encoder pruning, 

here we showed that conducting decoder pruning and training 

imultaneously provides good performance. We also demonstrated 

hat using appropriate pruning methods, ideal sparsity levels can 

e found in the range of 80% to 95%. These sparse networks can 

atch or outperform their dense counterparts. Finally, we show 

hat for a given performance level, a large-sparse LSTM captioning 

odel outperforms a small-dense one in terms of model costs. In 

hort, this is the first extensive attempt at exploring unstructured 

odel pruning for image captioning. We hope that this work can 

pur new research interest in this direction and subsequently serve 

s benchmark for future image captioning pruning works. 

We believe that this work opens up a sea of directions for fu- 

ure works. Firstly, optimised sparse matrix multiplication kernels 

nd block-sparsity patterns can be implemented in order to realise 

peed-up at inference time. Finally, there are many other pruning 

ethods that are yet to be tested, including variational pruning 

nd saliency-based methods. 
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